(選修4—5 不等式證明選講)(本題滿分7分)
對于任意實數(shù),不等式恒成立,試求實數(shù)的取值范圍.
本試題主要是考查了絕對值不等式的恒成立問題的運用。利用絕對值不等式的放縮法,得到參數(shù)a分離后的表達式的最值,結(jié)合最值得到參數(shù)的取值范圍的問題。注意利用絕對值不等式的放縮的運用,是解決該試題的關(guān)鍵。
解:由題知,恒成立,
不大于的最小值            …………3分
,當且僅當時取等號
的最小值等于2.                          …………6分 
∴x的范圍即為不等式|x-1|+|x-2|≤2的解,解不等式得 ………7分
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

設(shè)正有理數(shù)的一個近似值,令
(1) 若,求證:;
(2) 求證:更接近于

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題滿分12分)已知中至少有一個小于2.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

若關(guān)于x的不等式ax 2 - |x| + 2a <0的解集為,則實數(shù)a的取值范圍為 ________.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知則下列不等式正確的是
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

, 則下列正確的是(    )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

a∈R,且a2+a<0,那么-a,-a3,a2的大小關(guān)系是(  )
A.-a>a2>-a3B.a(chǎn)2>-a3>-a
C.-a3>a2>-aD.a(chǎn)2>-a>-a3

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

設(shè),則的大小關(guān)系是____________。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

不等式的解集為(    )。
A.B.
C.D.

查看答案和解析>>

同步練習冊答案