(理科做)某城市有甲、乙、丙3個(gè)旅游景點(diǎn),一位客人游覽這三個(gè)景點(diǎn)的概率分別是0.4,0.5,0.6,且客人是否游覽哪個(gè)景點(diǎn)互不影響,設(shè)ξ表示客人離開(kāi)該城市時(shí)游覽的景點(diǎn)數(shù)與沒(méi)有游覽的景點(diǎn)數(shù)之差的絕對(duì)值.
(Ⅰ)求ξ的分布及數(shù)學(xué)期望;
(Ⅱ)記“函數(shù)f(x)=x2-3ξx+1在區(qū)間[2,+∞)上單調(diào)遞增”為事件A,求事件A的概率.
【答案】
分析:(I)ξ表示客人離開(kāi)該城市時(shí)游覽的景點(diǎn)數(shù)與沒(méi)有游覽的景點(diǎn)數(shù)之差的絕對(duì)值,根據(jù)客人游覽的景點(diǎn)數(shù)的可能取值為0,1,2,3.和客人沒(méi)有游覽的景點(diǎn)數(shù)的可能取值為3,2,1,0,寫(xiě)出變量的可能取值,根據(jù)相互獨(dú)立事件同時(shí)發(fā)生的概率寫(xiě)出分布列和期望.
(II)由題意知本題是一個(gè)等可能事件的概率,函數(shù)f(x)=x
2-3ξx+1在區(qū)間[2,+∞)上單調(diào)遞增,根據(jù)二次函數(shù)的性質(zhì),寫(xiě)出函數(shù)遞增的變量的值,知道只有當(dāng)變量對(duì)應(yīng)1是成立,得到結(jié)果.
解答:解:(I)分別記“客人游覽甲景點(diǎn)”,“客人游覽乙景點(diǎn)”,“客人游覽丙景點(diǎn)”
為事件A
1,A
2,A
3.由已知A
1,A
2,A
3相互獨(dú)立,P(A
1)=0.4,P(A
2)=0.5,P(A
3)=0.6.
客人游覽的景點(diǎn)數(shù)的可能取值為0,1,2,3.相應(yīng)地,客人沒(méi)有游覽的景點(diǎn)數(shù)的可能取值為3,2,1,0,所以ξ的可能取值為1,3.
P(ξ=3)=P(A
1•A
2•A
3)+P(
)
=P(A
1)P(A
2)P(A
3)+P(
)
=2×0.4×0.5×0.6=0.24,
P(ξ=1)=1-0.24=0.76.
所以ξ的分布列為
Eξ=1×0.76+3×0.24=1.48.
(Ⅱ)因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025124305644991589/SYS201310251243056449915022_DA/2.png">,
所以函數(shù)
上單調(diào)遞增,
要使f(x)在[2,+∞)上單調(diào)遞增,當(dāng)且僅當(dāng)
.
從而
.
點(diǎn)評(píng):本題考查離散型隨機(jī)變量的分布列和期望,考查等可能事件的概率,考查二次函數(shù)的性質(zhì),是一個(gè)綜合題目,這種題目可以作為解答題目出現(xiàn)在高考試卷中.