【題目】已知函數(shù)f(x)=sin(2x+ )+sin(2x﹣ )+2cos2x﹣1,x∈R.
(1)求函數(shù)f(x)的最小正周期;
(2)求函數(shù)f(x)在區(qū)間[ ]上的最大值和最小值.

【答案】
(1)解:∵f(x)=sin2xcos +cos2xsin +sin2xcos ﹣cos2xsin +cos2x

=sin2x+cos2x

= sin(2x+ ),

∴函數(shù)f(x)的最小正周期T=


(2)解:∵函數(shù)f(x)在區(qū)間[ ]上是增函數(shù),在區(qū)間[ , ]上是減函數(shù),

又f(﹣ )=﹣1,f( )= ,f( )=1,

∴函數(shù)f(x)在區(qū)間[ ]上的最大值為 ,最小值為﹣1


【解析】(1)利用正弦函數(shù)的兩角和與差的公式與輔助角公式將f(x)=sin(2x+ )+sin(2x﹣ )+2cos2x﹣1化為f(x)= sin(2x+ ),即可求得函數(shù)f(x)的最小正周期;(2)可分析得到函數(shù)f(x)在區(qū)間[ ]上是增函數(shù),在區(qū)間[ , ]上是減函數(shù),從而可求得f(x)在區(qū)間[ ]上的最大值和最小值.
【考點(diǎn)精析】利用三角函數(shù)的最值對題目進(jìn)行判斷即可得到答案,需要熟知函數(shù),當(dāng)時(shí),取得最小值為;當(dāng)時(shí),取得最大值為,則,,

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為保障高考的公平性,高考時(shí)每個(gè)考點(diǎn)都要安裝手機(jī)屏蔽儀,要求在考點(diǎn)周圍1 km內(nèi)不能收到手機(jī)信號,檢查員抽查某市一考點(diǎn),在考點(diǎn)正西約 km/h的的B處有一條北偏東60°方向的公路,在此處檢查員用手機(jī)接通電話,以每小時(shí)12千米的速度沿公路行駛,最多需要多少時(shí)間,檢查員開始收不到信號,并至少持續(xù)多長時(shí)間該考點(diǎn)才算合格?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,單位圓上存在兩點(diǎn),滿足均與軸垂直,設(shè)的面積之和記為

,求的值;

若對任意的,存在,使得成立,且實(shí)數(shù)使得數(shù)列為遞增數(shù)列,其中求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某地區(qū)經(jīng)過一年的新農(nóng)村建設(shè),農(nóng)村的經(jīng)濟(jì)收入增加了一倍.實(shí)現(xiàn)翻番.為更好地了解該地區(qū)農(nóng)村的經(jīng)濟(jì)收入變化情況,統(tǒng)計(jì)了該地區(qū)新農(nóng)村建設(shè)前后農(nóng)村的經(jīng)濟(jì)收入構(gòu)成比例.得到如下餅圖:

則下面結(jié)論中不正確的是

A. 新農(nóng)村建設(shè)后,種植收入減少

B. 新農(nóng)村建設(shè)后,其他收入增加了一倍以上

C. 新農(nóng)村建設(shè)后,養(yǎng)殖收入增加了一倍

D. 新農(nóng)村建設(shè)后,養(yǎng)殖收入與第三產(chǎn)業(yè)收入的總和超過了經(jīng)濟(jì)收入的一半

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,底面為正方形, , .

(Ⅰ)若的中點(diǎn),求證: 平面

(Ⅱ)若, ,求三棱錐的高.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列有關(guān)統(tǒng)計(jì)知識的四個(gè)命題正確的是( )

A. 衡量兩變量之間線性相關(guān)關(guān)系的相關(guān)系數(shù)越接近,說明兩變量間線性關(guān)系越密切

B. 在回歸分析中,可以用卡方來刻畫回歸的效果,越大,模型的擬合效果越差

C. 線性回歸方程對應(yīng)的直線至少經(jīng)過其樣本數(shù)據(jù)點(diǎn)中的一個(gè)點(diǎn)

D. 線性回歸方程中,變量每增加一個(gè)單位時(shí),變量平均增加個(gè)單位

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,,DAE的中點(diǎn),C是線段BE上的一點(diǎn),且,,將沿AB折起使得二面角是直二面角.

(l)求證:CD平面PAB;

(2)求直線PE與平面PCD所成角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知a,b為正實(shí)數(shù).

(1)求證:ab

(2)利用(1)的結(jié)論求函數(shù)y(0<x<1)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知f(x)R上是單調(diào)遞減的一次函數(shù),且f(f(x))4x1.

(1)f(x)

(2)求函數(shù)yf(x)x2xx[1,2]上的最大值與最小值.

查看答案和解析>>

同步練習(xí)冊答案