【題目】已知函數(shù)(),數(shù)列的前項(xiàng)和為,點(diǎn)在圖象上,且的最小值為.
(1)求數(shù)列的通項(xiàng)公式;
(2)數(shù)列滿足,記數(shù)列的前項(xiàng)和為,求證: .
【答案】(1).(2)見(jiàn)解析.
【解析】試題分析:(1)根據(jù)二次函數(shù)的最值可求得 的值,從而可得,進(jìn)而可得結(jié)果;(2)由(1)知 ,裂項(xiàng)相消法求和,放縮法即可證明.
試題解析:(1),
故的最小值為.
又,所以,即.
所以當(dāng)時(shí), ;
當(dāng)時(shí), 也適合上式,
所以數(shù)列的通項(xiàng)公式為.
(2)證明:由(1)知 ,
所以 ,
所以.
【方法點(diǎn)晴】裂項(xiàng)相消法是最難把握的求和方法之一,其原因是有時(shí)很難找到裂項(xiàng)的方向,突破這一難點(diǎn)的方法是根據(jù)式子的結(jié)構(gòu)特點(diǎn),掌握一些常見(jiàn)的裂項(xiàng)技巧:①;②
;③;
④;此外,需注意裂項(xiàng)之后相消的過(guò)程中容易出現(xiàn)丟項(xiàng)或多項(xiàng)的問(wèn)題,導(dǎo)致計(jì)算結(jié)果錯(cuò)誤.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】五一節(jié)期間,某商場(chǎng)為吸引顧客消費(fèi)推出一項(xiàng)優(yōu)惠活動(dòng),活動(dòng)規(guī)則如下:消費(fèi)額每滿100元可轉(zhuǎn)動(dòng)如圖所示的轉(zhuǎn)盤(pán)一次,并獲得相應(yīng)金額的返券.(假定指針等可能地停在任一位置,指針落在區(qū)域的邊界時(shí),重新轉(zhuǎn)一次)指針?biāo)诘膮^(qū)域及對(duì)應(yīng)的返劵金額見(jiàn)表.
例如:消費(fèi)218元,可轉(zhuǎn)動(dòng)轉(zhuǎn)盤(pán)2次,所獲得的返券金額是兩次金額之和.
(1)已知顧客甲消費(fèi)后獲得n次轉(zhuǎn)動(dòng)轉(zhuǎn)盤(pán)的機(jī)會(huì),已知他每轉(zhuǎn)一次轉(zhuǎn)盤(pán)指針落在區(qū)域邊界的概率為p,每次轉(zhuǎn)動(dòng)轉(zhuǎn)盤(pán)的結(jié)果相互獨(dú)立,設(shè)ξ為顧客甲轉(zhuǎn)動(dòng)轉(zhuǎn)盤(pán)指針落在區(qū)域邊界的次數(shù),ξ的數(shù)學(xué)期望Eξ= ,方差Dξ= ,求n、p的值;
(2)顧客乙消費(fèi)280元,并按規(guī)則參與了活動(dòng),他獲得返券的金額記為η(元).求隨機(jī)變量η的分布列和數(shù)學(xué)期望.
指針位置 | A區(qū)域 | B區(qū)域 | C區(qū)域 |
返券金額(單位:元) | 60 | 30 | 0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn), 軸的非負(fù)半軸為極軸建立極坐標(biāo)系,圓的極坐標(biāo)方程為,直線與圓交于, 兩點(diǎn).
(1)求圓的直角坐標(biāo)方程及弦的長(zhǎng);
(2)動(dòng)點(diǎn)在圓上(不與, 重合),試求的面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn), 軸的非負(fù)半軸為極軸建立極坐標(biāo)系,圓的極坐標(biāo)方程為,直線與圓交于, 兩點(diǎn).
(1)求圓的直角坐標(biāo)方程及弦的長(zhǎng);
(2)動(dòng)點(diǎn)在圓上(不與, 重合),試求的面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓: 的長(zhǎng)軸長(zhǎng)為,且橢圓與圓: 的公共弦長(zhǎng)為.
(1)求橢圓的方程.
(2)經(jīng)過(guò)原點(diǎn)作直線(不與坐標(biāo)軸重合)交橢圓于, 兩點(diǎn), 軸于點(diǎn),點(diǎn)在橢圓上,且,求證: , , 三點(diǎn)共線..
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在三棱柱中,為正方形,為菱形,.
(Ⅰ)求證:平面平面;
(Ⅱ)若是中點(diǎn),是二面角的平面角,求直線與平面所成角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
已知曲線在平面直角坐標(biāo)系下的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),以軸正半軸為極軸,建立極坐標(biāo)系.
(1)求曲線的普通方程及極坐標(biāo)方程;
(2)直線的極坐標(biāo)方程是,射線: 與曲線交于點(diǎn)與直線交于點(diǎn),求線段的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義域?yàn)镽的函數(shù)f(x)滿足f(x+2)=2f(x),當(dāng)x∈[0,2)時(shí),f(x)= ,若x∈[﹣4,﹣2)時(shí),f(x)≥ 恒成立,則實(shí)數(shù)t的取值范圍是( )
A.[﹣2,0)∪(0,1)
B.[﹣2,0)∪[1,+∞)
C.[﹣2,1]
D.(﹣∞,﹣2]∪(0,1]
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線l的參數(shù)方程: (t為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸,且取相同的長(zhǎng)度單位建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為ρ2= .
(1)求曲線C的直角坐標(biāo)方程和直線l的普通方程;
(2)設(shè)曲線C與直線l交于A,B兩點(diǎn),若P(1,2),求|PA|+|PB|的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com