已知ABCD是正方形,BE∥EC,CA=EC,EC的延長線交BA的延長線于F,求證:AF=AE.

答案:
解析:

證明:以正方形ABCD的邊CD所在直線為x軸,以C點為原點建立直角坐標系,設正方形的邊長為1,則A、B的坐標分別為(11)

(0,1)

E點的坐標為(xy),則=(x,y1),=(1,-1)

x·(1)+1·(y1)=0

又∵||=||

解①②得E點的坐標為,∴=,||=

F點的坐標為,則=

==共線

解得:即點F的坐標為,=

||=

||==||,即AF=AE


提示:

分析:如果建立平面直角坐標系,要證明||=||,只需求出A、E、F點的坐標.


練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知ABCD是正方形,直線AE⊥平面ABCD,且AB=AE=1,
(1)求異面直線AC,DE所成的角;
(2)求二面角A-CE-D的大;
(3)設P為棱DE的中點,在△ABE的內(nèi)部或邊上是否存在一點H,使PH⊥平面ACE?若存在,求出點H的位置;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖所示,已知ABCD是正方形,PD⊥平面ABCD,PD=AD=2.
(1)求異面直線PC與BD所成的角;
(2)在線段PB上是否存在一點E,使PC⊥平面ADE?若存在,確定E點的位置;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,已知ABCD是正方形,DE⊥平面ABCD,BF⊥平面ABCD,且AB=FB=2DE.
(Ⅰ)求證:平面AEC⊥平面AFC;
(Ⅱ)求直線EC與平面BCF所成的角;
(Ⅲ)問在EF上是否存在一點M,使三棱錐M-ACF是正三棱錐?若存在,試確定M點的位置;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖所示,已知ABCD是正方形,邊長為2,PD⊥平面ABCD.
(1)若PD=2,①求異面直線PC與BD所成的角,②求二面角D-PB-C的余弦值;
③在PB上是否存在E點,使PC⊥平面ADE,若存在,確定點E位置,若不存在說明理由;
(2)若PD=m,記二面角D-PB-C的大小為θ,若θ<60°,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年吉林省延吉市高三數(shù)學質(zhì)量檢測理科數(shù)學 題型:解答題

(12分)如圖所示,已知ABCD是正方形,PD⊥平面ABCD,

PD=AD=2.

  (1)求異面直線PC與BD所成的角;

  (2)在線段PB上是否存在一點E,使PC⊥平面ADE?

        若存在,確定E點的位置;若不存在,說明理由.

 

 

 

查看答案和解析>>

同步練習冊答案