分析 利用二次函數(shù)的圖象的對(duì)稱性、中點(diǎn)坐標(biāo)公式即可判斷出結(jié)論.
解答 解:∵f(x)=ax2+bx+c的對(duì)稱軸為直線x=-$\frac{2a}$,
設(shè)方程m[f(x)]2+nf(x)+p=0的解為y1,y2,
必有y1=ax2+bx+c,y2=ax2+bx+c,
那么從圖象上看,y=y1,y=y2是一條平行于x軸的直線,它們與f(x)有交點(diǎn).
由于對(duì)稱性,則方程y1=ax2+bx+c的兩個(gè)解x1,x2要關(guān)于直線x=-$\frac{2a}$對(duì)稱,
也就是說(shuō)2(x1+x2)=-$\frac{2b}{a}$,同理方程y2=ax2+bx+c的兩個(gè)解x3,x4也要關(guān)于直線x=-$\frac{2a}$對(duì)稱.
那就得到2(x3+x4)=-$\frac{2b}{a}$.
在C中,可以找到對(duì)稱軸直線x=2.5,
也就是1,4為一個(gè)方程的解,2,3為一個(gè)方程的解,
所以得到的解的集合可以是{1,2,3,4}.
而在D中,{1,4,16,64},中間兩個(gè)數(shù)4,16的對(duì)稱軸為10,而最大值和最小值1,64的對(duì)稱軸為x=$\frac{65}{2}$,
即函數(shù)的圖象不是軸對(duì)稱圖形.
綜上可得:只有①②③正確.
故答案為:①②③.
點(diǎn)評(píng) 本題考查了二次函數(shù)的圖象的對(duì)稱性、中點(diǎn)坐標(biāo)公式,考查了推理能力與計(jì)算能力,屬于難題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1條 | B. | 2條 | C. | 3條 | D. | 4條 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | ①②③ | B. | ②③ | C. | ①③④ | D. | ①②③④ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com