【題目】已知函數(shù).
(1)判斷并證明的奇偶性;
(2)用單調性的定義證明函數(shù)在其定義域上是增函數(shù);
(3)若,求的取值范圍.
【答案】(1)f(x)是奇函數(shù),證明見解析(2)證明見解析(3)(﹣∞,)
【解析】
(1)利用函數(shù)奇偶性的定義即可判斷與證明;
(2)按照單調性定義證明的步驟,取值-作差-變形-定號-下結論,即可證出;
(3)利用函數(shù)的奇偶性和單調性,將抽象不等式可轉化為
,解出即可.
(1)因為定義域為,
f(﹣x)=11﹣21
1﹣2(1)=﹣f(x),
所以f(x)是奇函數(shù);
(2)證明:設x2>x1,則f(x2)﹣f(x1)=(1)﹣(1)
=2,
由題設可得:330,(1+3)>0,(1+3)>0,
∴20,
即f(x2)﹣f(x1)>0,故f(x)在其定義域上是增函數(shù);
(3)不等式f(3m+1)+f(2m﹣3)<0,f(3m+1)<﹣f(2m﹣3)=f(3﹣2m),
∴3m+1<3﹣2m,解得m,即不等式的解集為(﹣∞,).
科目:高中數(shù)學 來源: 題型:
【題目】某校100名學生期中考試數(shù)學成績的頻率分布直方圖如圖所示,其中成績分組區(qū)間如下:
組號 | 第一組 | 第二組 | 第三組 | 第四組 | 第五組 |
分組 | [50,60) | [60,70) | [70,80) | [80,90) | [90,100] |
(1)求圖中a的值;
(2)根據(jù)頻率分布直方圖,估計這100名學生期中考試數(shù)學成績的平均分;
(3)現(xiàn)用分層抽樣的方法從第3、4、5組中隨機抽取6名學生,將該樣本看成一個總體,從中隨機抽取2名,求其中恰有1人的分數(shù)不低于90分的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列命題正確的是( )
A. 是向量,不共線的充要條件
B. 在空間四邊形中,
C. 在棱長為1的正四面體中,
D. 設,,三點不共線,為平面外一點,若,則,,,四點共面
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】2016年10月9日,教育部考試中心下發(fā)了《關于2017年普通高考考試大綱修訂內容的通知》,在各科修訂內容中明確提出,增加中華優(yōu)秀傳統(tǒng)文化的考核內容,積極培育和踐行社會主義核心價值觀,充分發(fā)揮高考命題的育人功能和積極導向作用.宿州市教育部門積極回應,編輯傳統(tǒng)文化教材,在全市范圍內開設書法課,經典誦讀等課程.為了了解市民對開設傳統(tǒng)文化課的態(tài)度,教育機構隨機抽取了200位市民進行了解,發(fā)現(xiàn)支持開展的占,在抽取的男性市民120人中持支持態(tài)度的為80人.
(Ⅰ)完成列聯(lián)表,并判斷是否有的把握認為性別與支持與否有關?
(Ⅱ)為了進一步征求對開展傳統(tǒng)文化的意見和建議,從抽取的200位市民中對不支持的按照分層抽樣的方法抽取5位市民,并從抽取的5人中再隨機選取2人進行座談,求選取的2人恰好為1男1女的概率.
附: .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓:的離心率為,其左焦點與拋物線的焦點重合.
(1)求橢圓的方程;
(2)過動點的直線交軸于點,交橢圓于點,在第一象限,,過點做軸的垂線交橢圓于點,連接并延長交橢圓于另一點.設直線的斜率分別為,證明:為定值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】利用獨立性檢驗的方法調查高中生性別與愛好某項運動是否有關,通過隨機調查200名高中生是否愛好某項運動,利用列聯(lián)表,由計算可得,參照下表:
0.01 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 5,024 | 6.635 | 7.879 | 10.828 |
得到的正確結論是( )
A. 有99%以上的把握認為“愛好該項運動與性別無關”
B. 有99%以上的把握認為“愛好該項運動與性別有關”
C. 在犯錯誤的概率不超過0.5%的前提下,認為“愛好該項運動與性別有關”
D. 在犯錯誤的概率不超過0.5%的前提下,認為“愛好該項運動與性別無關”
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】汽車的“燃油效率”是指汽車每消耗1升汽油行駛的里程,下圖描述了甲、乙、丙三輛汽車在不同速度下的燃油效率情況. 下列敘述中正確的是( )
A. 消耗1升汽油,乙車最多可行駛5千米
B. 以相同速度行駛相同路程,三輛車中,甲車消耗汽油最多
C. 甲車以80千米/小時的速度行駛1小時,消耗10升汽油
D. 某城市機動車最高限速80千米/小時. 相同條件下,在該市用丙車比用乙車更省油
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】函數(shù)的定義域為,且對任意,有,且當時.
(1)證明:是奇函數(shù);
(2)證明:在上是減函數(shù);
(3)求在區(qū)間上的最大值和最小值.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com