曲線y=x-
1
x
在點(diǎn)(1,0)處的切線方程為(  )
A.y=2x-2B.y=x-1C.y=0D.y=-x+1
y=x-
1
x
,
∴y′=1+
1
x2

則y′|x=1=2即曲線在點(diǎn)(1,0)處的切線斜率為2,
∴曲線在點(diǎn)(1,0)處的切線方程為y-0=2(x-1),
即2x-y-2=0
故選A.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)f(x)=lnx,g(x)=
a
x
(a>0),設(shè)F(x)=f(x)+g(x).
(Ⅰ)求F(x)的單調(diào)區(qū)間;
(Ⅱ)若以y=F(x)(x∈(0,3])圖象上任意一點(diǎn)P(x0,y0)為切點(diǎn)的切線的斜率k
1
2
恒成立,求實(shí)數(shù)a的最小值.
(Ⅲ)是否存在實(shí)數(shù)m,使得函數(shù)y=g(
2a
x2+1
)+m-1的圖象與y=f(1+x2)的圖象恰好有四個(gè)不同的交點(diǎn)?若存在,求出m的取值范圍,若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè)函數(shù)f(x)=x3-3x2+2x,若過(guò)f(x)圖象上一點(diǎn)P(x0,y0)(x0≠0)的切線為l:y=kx,求k的值和P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知函數(shù)f(x)=x3-3x2+1,則在曲線y=f(x)的切線中,斜率最小的切線方程是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知
lim
x→4
f(x)-f(4)
x-4
=-2
,則
lim
t→0
f(4-t)-f(4)
2t
=( 。
A.4B.-4C.1D.-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知函數(shù)f(x)在區(qū)間(a,b)內(nèi)可導(dǎo),其導(dǎo)函數(shù)y=f'(x)的圖象如圖所示,則函數(shù)f(x)在區(qū)間(a,b)內(nèi)有( 。
A.一個(gè)極大值,一個(gè)極小值
B.一個(gè)極大值,兩個(gè)極小值
C.兩個(gè)極大值,一個(gè)極小值
D.兩個(gè)極大值,兩個(gè)極小值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

曲線y=x3-x在點(diǎn)(1,0)處的切線與直線x+ay=1垂直,則實(shí)數(shù)a的值為( 。
A.2B.-2C.
1
2
D.-
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

函數(shù)f(x)=
x4
4
-
x3
3
的極值點(diǎn)為(  )
A.0B.-1C.0或1D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

若a>0,b>0,且函數(shù)f(x)=4x3-ax2-2bx在x=1處有極值,則a+b等于( 。
A.2B.3C.6D.9

查看答案和解析>>

同步練習(xí)冊(cè)答案