【題目】若等差數(shù)列{an}滿足a7+a8+a9>0,a7+a10<0,則當(dāng)n=時(shí),{an}的前n項(xiàng)和最大.
【答案】8
【解析】解:由等差數(shù)列的性質(zhì)可得a7+a8+a9=3a8>0,
∴a8>0,又a7+a10=a8+a9<0,∴a9<0,
∴等差數(shù)列{an}的前8項(xiàng)為正數(shù),從第9項(xiàng)開始為負(fù)數(shù),
∴等差數(shù)列{an}的前8項(xiàng)和最大,
所以答案是:8.
【考點(diǎn)精析】關(guān)于本題考查的等差數(shù)列的性質(zhì),需要了解在等差數(shù)列{an}中,從第2項(xiàng)起,每一項(xiàng)是它相鄰二項(xiàng)的等差中項(xiàng);相隔等距離的項(xiàng)組成的數(shù)列是等差數(shù)列才能得出正確答案.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】觀察分析下表中的數(shù)據(jù):
多面體 | 面數(shù)(F) | 頂點(diǎn)數(shù)(V) | 棱數(shù)(E) |
三棱柱 | 5 | 6 | 9 |
五棱錐 | 6 | 6 | 10 |
立方體 | 6 | 8 | 12 |
猜想一般凸多面體中F,V,E所滿足的等式是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若函數(shù)f(x)=2ax﹣b+1(a>0且a≠1)的圖像經(jīng)過定點(diǎn)(2,3),則b的值是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】從0,1,2,3,4中選取三個(gè)不同的數(shù)字組成一個(gè)三位數(shù),其中奇數(shù)有( )
A.18個(gè)
B.27個(gè)
C.36個(gè)
D.60個(gè)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x)=ax3+bx9+2在區(qū)間(0,+∞)上有最大值5,那么f(x)在(﹣∞,0)上的最小值為( )
A.﹣5
B.﹣1
C.﹣3
D.5
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于函數(shù)y=log4(x2﹣2x+5)有以下4個(gè)結(jié)論:其中正確的有 ①定義域?yàn)镽; ②遞增區(qū)間為[1,+∞);
③最小值為1; ④圖像恒在x軸的下方.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)f(x)是定義域?yàn)镽的奇函數(shù),當(dāng)x>0時(shí)f(x)=﹣x+1,則當(dāng)x<0時(shí),f(x)的表達(dá)式為( )
A.f(x)=﹣x+1
B.f(x)=﹣x﹣1
C.f(x)=x+1
D.f(x)=x﹣1
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對區(qū)間I上有定義的函數(shù)g(x),記g(I)={y|y=g(x),x∈I}.已知定義域?yàn)閇0,3]的函數(shù)y=f(x)有反函數(shù)y=f﹣1(x),且f﹣1([0,1))=[1,2),f﹣1((2,4])=[0,1).若方程f(x)﹣x=0有解x0 , 則x0= .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x2+ax+b,g(x)=ex(cx+d)若曲線y=f(x)和曲線y=g(x)都過點(diǎn)P(0,2),且在點(diǎn)P處有相同的切線y=4x+2.
(1)求a,b,c,d的值;
(2)若x≥﹣2時(shí),f(x)≤kg(x),求k的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com