【題目】設(shè)a+b=2,b>0,則當(dāng)a=時(shí), 取得最小值.
【答案】﹣2
【解析】解:∵a+b=2,b>0,
∴ = ,(a<2)
設(shè)f(a)= ,(a<2),畫出此函數(shù)的圖象,如圖所示.
利用導(dǎo)數(shù)研究其單調(diào)性得,
當(dāng)a<0時(shí),f(a)=﹣ + ,
f′(a)= = ,當(dāng)a<﹣2時(shí),f′(a)<0,當(dāng)﹣2<a<0時(shí),f′(a)>0,
故函數(shù)在(﹣∞,﹣2)上是減函數(shù),在(﹣2,0)上是增函數(shù),
∴當(dāng)a=﹣2時(shí), 取得最小值 .
同樣地,當(dāng)0<a<2時(shí),得到當(dāng)a= 時(shí), 取得最小值 .
綜合,則當(dāng)a=﹣2時(shí), 取得最小值.
所以答案是:﹣2.
【考點(diǎn)精析】通過靈活運(yùn)用基本不等式,掌握基本不等式:,(當(dāng)且僅當(dāng)時(shí)取到等號(hào));變形公式:即可以解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知向量=(4cos2(-),cosx+sinx),=(sinx,cosx-sinx),設(shè)f(x)=-1
(1)求滿足|f(x)|≤1的實(shí)數(shù)x的集合;
(2)若函數(shù)φ(x)=[f(2x)+tf(x)-tf(-x)]-(1+)在[-,]上的最大值為2,求實(shí)數(shù)t的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)F為拋物線C:y2=4x的焦點(diǎn),過點(diǎn)P(﹣1,0)的直線l交拋物線C于兩點(diǎn)A,B,點(diǎn)Q為線段AB的中點(diǎn),若|FQ|=2,則直線l的斜率等于 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知a∈R,函數(shù)f(x)=x3﹣3x2+3ax﹣3a+3.
(1)求曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程;
(2)當(dāng)x∈[0,2]時(shí),求|f(x)|的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列的前項(xiàng)和為,且.
(1)證明是等比數(shù)列,并求的通項(xiàng)公式;
(2)求;
(3)設(shè),若對恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱柱ABCD﹣A1B1C1D1中,側(cè)棱A1A⊥底面ABCD,AB∥DC,AB⊥AD,AD=CD=1,AA1=AB=2,E為棱AA1的中點(diǎn).
(1)證明B1C1⊥CE;
(2)求二面角B1﹣CE﹣C1的正弦值.
(3)設(shè)點(diǎn)M在線段C1E上,且直線AM與平面ADD1A1所成角的正弦值為 ,求線段AM的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知奇函數(shù)f(x)=a(a為常數(shù)).
(1)求a的值;
(2)若函數(shù)g(x)=|(2x+1)f(x)|﹣k有2個(gè)零點(diǎn),求實(shí)數(shù)k的取值范圍;
(3)若x∈[﹣2,﹣1]時(shí),不等式f(x)恒成立,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,角A,B,C的對邊分別為a,b,c,且2cos2 cosB﹣sin(A﹣B)sinB+cos(A+C)=﹣ .
(1)求cosA的值;
(2)若a=4 ,b=5,求向量 在 方向上的投影.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】分形幾何學(xué)是一門以不規(guī)則幾何形態(tài)為研究對象的幾何學(xué).分形的外表結(jié)構(gòu)極為復(fù)雜,但其內(nèi)部卻是有規(guī)律可尋的.一個(gè)數(shù)學(xué)意義上分形的生成是基于一個(gè)不斷迭代的方程式,即一種基于遞歸的反饋系統(tǒng).下面我們用分形的方法來得到一系列圖形,如圖1,線段的長度為a,在線段上取兩個(gè)點(diǎn),,使得,以為一邊在線段的上方做一個(gè)正六邊形,然后去掉線段,得到圖2中的圖形;對圖2中的最上方的線段作相同的操作,得到圖3中的圖形;依此類推,我們就得到了以下一系列圖形:
記第個(gè)圖形(圖1為第1個(gè)圖形)中的所有線段長的和為,現(xiàn)給出有關(guān)數(shù)列的四個(gè)命題:
①數(shù)列是等比數(shù)列;
②數(shù)列是遞增數(shù)列;
③存在最小的正數(shù),使得對任意的正整數(shù) ,都有 ;
④存在最大的正數(shù),使得對任意的正整數(shù),都有.
其中真命題的序號(hào)是________________(請寫出所有真命題的序號(hào)).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com