(本小題滿分14分)

從某學校高一年級名學生中隨機抽取名測量身高,據(jù)測量被抽取的學生的身高全部介于之間,將測量結(jié)果按如下方式分成八組:第一組.第二組;…第八組,右圖

是按上述分組方法得到的條形圖                       

(1)根據(jù)已知條件填寫下面表格:

組 別

1

2

3

4

5

6

7

8

樣本數(shù)

 

 

 

 

 

 

 

 

(2)估計這所學校高一年級名學生中身高在以上(含)的人數(shù);

(3)在樣本中,若第二組有人為男生,其余為女生,第七組有人為女生,其余為男生,在第二組和第七組中各選一名同學組成實驗小組,問:實驗小組中恰為一男一女的概率是多少?

 

【答案】

解:(1)由條形圖得第七組頻率為

∴第七組的人數(shù)為3人.  …………………………………………………… 1分

組別

1

2

3

4

5

6

7

8

樣本中人數(shù)

2

4

10

10

15

4

3

2

                                                       ………………………………… 4分

(2)解:由條形圖得前五組頻率為(0.008+0.016+0.04+0.04+0.06)×5=0.82,后三組頻率為1-0.82=0.18.

估計這所學校高三年級身高在180cm以上(含180cm)的人數(shù)800×0.18=144(人).  …… 8分

(3)第二組四人記為、、、,其中a為男生,b、c、d為女生,第七組三人記為1、2、3,

其中1、2為男生,3為女生,基本事件列表如下:  ……………………………………… 9分

[來源:Z_xx_k.Com]

a

B

c

d

1

1a

1b

1c

1d

2

2a

2b

2c

2d

3

3a

3b

3c

3d

………… 12分

所以基本事件有12個,恰為一男一女的事件有1b,1c,1d,2b,2c,2d,3a共7個, … 13分

因此實驗小組中,恰為一男一女的概率是.       …………………………………… 14分

 

【解析】略

 

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

(2011•廣東模擬)(本小題滿分14分 已知函數(shù)f(x)=
3
sin2x+2sin(
π
4
+x)cos(
π
4
+x)

(I)化簡f(x)的表達式,并求f(x)的最小正周期;
(II)當x∈[0,
π
2
]  時,求函數(shù)f(x)
的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(本小題滿分14分)設(shè)橢圓C1的方程為(ab>0),曲線C2的方程為y=,且曲線C1C2在第一象限內(nèi)只有一個公共點P。(1)試用a表示點P的坐標;(2)設(shè)A、B是橢圓C1的兩個焦點,當a變化時,求△ABP的面積函數(shù)S(a)的值域;(3)記min{y1,y2,……,yn}為y1,y2,……,yn中最小的一個。設(shè)g(a)是以橢圓C1的半焦距為邊長的正方形的面積,試求函數(shù)f(a)=min{g(a), S(a)}的表達式。

查看答案和解析>>

科目:高中數(shù)學 來源:2011年江西省撫州市教研室高二上學期期末數(shù)學理卷(A) 題型:解答題

(本小題滿分14分)
已知=2,點()在函數(shù)的圖像上,其中=.
(1)證明:數(shù)列}是等比數(shù)列;
(2)設(shè),求及數(shù)列{}的通項公式;
(3)記,求數(shù)列{}的前n項和,并證明.

查看答案和解析>>

科目:高中數(shù)學 來源:2015屆山東省威海市高一上學期期末考試數(shù)學試卷(解析版) 題型:解答題

 (本小題滿分14分)

某網(wǎng)店對一應(yīng)季商品過去20天的銷售價格及銷售量進行了監(jiān)測統(tǒng)計發(fā)現(xiàn),第天()的銷售價格(單位:元)為,第天的銷售量為,已知該商品成本為每件25元.

(Ⅰ)寫出銷售額關(guān)于第天的函數(shù)關(guān)系式;

(Ⅱ)求該商品第7天的利潤;

(Ⅲ)該商品第幾天的利潤最大?并求出最大利潤.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年廣東省高三下學期第一次月考文科數(shù)學試卷(解析版) 題型:解答題

(本小題滿分14分)已知的圖像在點處的切線與直線平行.

⑴ 求,滿足的關(guān)系式;

⑵ 若上恒成立,求的取值范圍;

⑶ 證明:

 

查看答案和解析>>

同步練習冊答案