在平面直角坐標(biāo)系中,經(jīng)過點的動直線,與橢圓)相交于兩點. 當(dāng)軸時,,當(dāng)軸時,
(Ⅰ)求橢圓的方程;
(Ⅱ)若的中點為,且,求直線的方程.
(Ⅰ);(Ⅱ).

試題分析:(Ⅰ)利用已知條件確定、的值,進而求出橢圓的方程;(Ⅱ)解法一是逆用“直角三角形斜邊上的中線等于斜邊的一半”這個性質(zhì),由得到為直角三角形,且為斜邊,于是得到,借助韋達定理與向量的有關(guān)知識確定直線的方程;解法二是直接設(shè)直線的方程,直接從問題中的等式出發(fā),借助韋達定理與弦長公式確定直線的方程.
試題解析:解法一:(Ⅰ)當(dāng)軸時,
當(dāng)軸時,,得,
解得,
所以橢圓的方程為:.    5分
(Ⅱ)設(shè)直線,與方程聯(lián)立,得
設(shè),,則, .①
因為,即,
所以,即,              8分
所以,則
將①式代入并整理得:,解出,
此時直線的方程為:,即,.  12分
解法二:(Ⅰ)同解法一                                   5分
(Ⅱ)設(shè)直線,與聯(lián)立,得.(﹡)
設(shè),,則,
從而
.       8分
設(shè),則
得:,
整理得,即,
,解得,從而
故所求直線的方程為:,
.                    12分
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓拋物線的焦點均在軸上,的中心和 的頂點均為坐標(biāo)原點從每條曲線上取兩個點,將其坐標(biāo)記錄于下表中:










(Ⅰ)求分別適合的方程的點的坐標(biāo);
(Ⅱ)求的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,曲線與曲線相交于、、、四個點.
⑴ 求的取值范圍;
⑵ 求四邊形的面積的最大值及此時對角線的交點坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知雙曲線 的左、右焦點分別為,以為直徑的圓與雙曲線漸近線的一個交點為,則此雙曲線的方程為(   )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

設(shè)拋物線上一點軸的距離是,則點到該拋物線焦點的距離是____.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

設(shè)為雙曲線的兩個焦點,點在此雙曲線上,,如果此雙曲線的離心率等于,那么點軸的距離等于               

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

下列關(guān)于圓錐曲線的命題:其中真命題的序號___________.(寫出所有真命題的序號)。
① 設(shè)為兩個定點,若,則動點的軌跡為雙曲線;
② 設(shè)為兩個定點,若動點滿足,且,則的最大值為8;
③ 方程的兩根可分別作橢圓和雙曲線的離心率;
④ 雙曲線與橢圓有相同的焦點

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知定點,,是圓上任意一點,點關(guān)于點的對稱點為,線段的中垂線與直線相交于點,則點的軌跡是
A.橢圓B.雙曲線C.拋物線D.圓

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知的頂點A在射線上,、兩點關(guān)于x軸對稱,0為坐標(biāo)原點,且線段AB上有一點M滿足當(dāng)點A在上移動時,記點M的軌跡為W.
(Ⅰ)求軌跡W的方程;
(Ⅱ)設(shè)是否存在過的直線與W相交于P,Q兩點,使得若存在,
求出直線;若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊答案