如圖所示,AD、CE是△ABC中邊BC、AB的高,AD和CE相交于點(diǎn)F.

求證:AF·FD=CF·FE.

見解析

解析證明 因?yàn)锳D⊥BC,CE⊥AB,
所以△AFE和△CFD都是直角三角形.
又因?yàn)椤螦FE=∠CFD,所以Rt△AFE∽R(shí)t△CFD.
所以AF∶FE=CF∶FD.
所以AF·FD=CF·FE.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,已知點(diǎn)在圓直徑的延長(zhǎng)線上,切圓點(diǎn),的平分線交于點(diǎn),交點(diǎn).

(1)求的度數(shù);(2)若,求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,AB為⊙O的直徑,直線CD與⊙O相切于E,AD垂直CD于D,BC垂直CD于C,EF垂直AB于F,連接AE,BE.證明:

(1)∠FEB=∠CEB;
(2)EF2=AD·BC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖所示,AB為⊙O的直徑,AE平分∠BAC交⊙O于E點(diǎn),過E作⊙O的切線交AC于點(diǎn)D,試判斷△AED的形狀,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,已知在⊙O中,P是弦AB的中點(diǎn),過點(diǎn)P作半徑OA的垂線,垂足是點(diǎn)E.分別交⊙O于C、D兩點(diǎn).

求證:PC·PD=AE·AO.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

試說明矩形的四個(gè)頂點(diǎn)在以對(duì)角線的交點(diǎn)為圓心的同一個(gè)圓上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,在?ABCD中,設(shè)E和F分別是邊BC和AD的中點(diǎn),BF和DE分別交AC于P、Q兩點(diǎn).

求證:AP=PQ=QC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,內(nèi)接于上,,于點(diǎn)E,點(diǎn)F在DA的延長(zhǎng)線上,,求證:

(1)的切線;
(2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,在中,的角平分線,的外接圓交,.

(1)求證:;
(2)當(dāng)時(shí),求的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案