【題目】給出下列五個(gè)命題:

①當(dāng)時(shí),有;

②若是銳角三角形,則

③已知是等差數(shù)列的前項(xiàng)和,若,則;

④函數(shù)的圖像關(guān)于直線(xiàn)對(duì)稱(chēng);

⑤當(dāng)時(shí),不等式恒成立,則實(shí)數(shù)的取值范圍為.

其中正確命題的序號(hào)為___________

【答案】② ③

【解析】

逐一考查所給命題的真假即可.

逐一考查所給的命題:

①當(dāng)時(shí),,不滿(mǎn)足,題中的命題錯(cuò)誤

②若是銳角三角形,則,即,

由余弦函數(shù)的單調(diào)性可得,即,題中的命題正確;

③已知是等差數(shù)列的前項(xiàng)和,若,

據(jù)此可得,

題中的命題正確;

④設(shè)函數(shù),則函數(shù)的圖像如圖所示,很明顯函數(shù)圖象不關(guān)于直線(xiàn)對(duì)稱(chēng),題中的命題錯(cuò)誤;

⑤當(dāng)時(shí),不等式恒成立,

據(jù)此可得:恒成立,

當(dāng)時(shí),,

當(dāng)時(shí),

由對(duì)勾函數(shù)的性質(zhì)可得:時(shí),,

則實(shí)數(shù)的取值范圍為,題中的命題錯(cuò)誤.

綜上可得,正確命題的序號(hào)為② .

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知某幾何體的三視圖和直觀圖如圖所示,其正視圖為矩形,左視圖為等腰直角三角形,俯視圖為直角梯形.

(1)證明:平面BCN⊥平面C1NB1;

(2)求二面角C-NB1-C1的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,以等腰直角三角形斜邊BC上的高AD為折痕,把ABD和ACD折成互相垂直的兩個(gè)平面后,某學(xué)生得出下列四個(gè)結(jié)論:

;

②∠BAC=60°;

三棱錐D﹣ABC是正三棱錐;

平面ADC和平面ABC的垂直.

其中正確的是(   )

A. ①② B. ②③ C. ③④ D. ①④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了監(jiān)控某種零件的一條生產(chǎn)線(xiàn)的生產(chǎn)過(guò)程,檢驗(yàn)員每天從該生產(chǎn)線(xiàn)上隨機(jī)抽取16個(gè)零件,并測(cè)量其尺寸(單位:cm).根據(jù)長(zhǎng)期生產(chǎn)經(jīng)驗(yàn),可以認(rèn)為這條生產(chǎn)線(xiàn)正常狀態(tài)下生產(chǎn)的零件的尺寸服從正態(tài)分布N(μ,σ2).(12分)
(1)假設(shè)生產(chǎn)狀態(tài)正常,記X表示一天內(nèi)抽取的16個(gè)零件中其尺寸在(μ﹣3σ,μ+3σ)之外的零件數(shù),求P(X≥1)及X的數(shù)學(xué)期望;
(2)一天內(nèi)抽檢零件中,如果出現(xiàn)了尺寸在(μ﹣3σ,μ+3σ)之外的零件,就認(rèn)為這條生產(chǎn)線(xiàn)在這一天的生產(chǎn)過(guò)程可能出現(xiàn)了異常情況,需對(duì)當(dāng)天的生產(chǎn)過(guò)程進(jìn)行檢查.
(。┰囌f(shuō)明上述監(jiān)控生產(chǎn)過(guò)程方法的合理性;
(ⅱ)下面是檢驗(yàn)員在一天內(nèi)抽取的16個(gè)零件的尺寸:

9.95

10.12

9.96

9.96

10.01

9.92

9.98

10.04

10.26

9.91

10.13

10.02

9.22

10.04

10.05

9.95

經(jīng)計(jì)算得 = =9.97,s= = ≈0.212,其中xi為抽取的第i個(gè)零件的尺寸,i=1,2,…,16.
用樣本平均數(shù) 作為μ的估計(jì)值 ,用樣本標(biāo)準(zhǔn)差s作為σ的估計(jì)值 ,利用估計(jì)值判斷是否需對(duì)當(dāng)天的生產(chǎn)過(guò)程進(jìn)行檢查?剔除( ﹣3 +3 )之外的數(shù)據(jù),用剩下的數(shù)據(jù)估計(jì)μ和σ(精確到0.01).
附:若隨機(jī)變量Z服從正態(tài)分布N(μ,σ2),則P(μ﹣3σ<Z<μ+3σ)=0.9974,0.997416≈0.9592, ≈0.09.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列{an}的前n項(xiàng)和公式為Sn=2n2-30n.

(1)求數(shù)列{an}的通項(xiàng)公式an;(2)求Sn的最小值及對(duì)應(yīng)的n值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)A,B是橢圓C: + =1長(zhǎng)軸的兩個(gè)端點(diǎn),若C上存在點(diǎn)M滿(mǎn)足∠AMB=120°,則m的取值范圍是( 。
A.(0,1]∪[9,+∞)
B.(0, ]∪[9,+∞)
C.(0,1]∪[4,+∞)
D.(0, ]∪[4,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,已知圓圓心為,過(guò)點(diǎn)且斜率為的直線(xiàn)與圓相交于不同的兩點(diǎn)、

)求的取值范圍;

)是否存在常數(shù),使得向量共線(xiàn)?如果存在,求值;如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在三棱柱中,底面為正三角形,側(cè)棱底面.已知 的中點(diǎn),

(1)求證:平面平面;

(2)求證:A1C∥平面

(3)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】“微信搶紅包”自2015年以來(lái)異;鸨,在某個(gè)微信群某次進(jìn)行的搶紅包活動(dòng)中,若所發(fā)紅包的總金額為8元,被隨機(jī)分配為1.72元,1.83元,2.28元,1.55元,0.62元, 5份供甲、乙等5人搶?zhuān)咳酥荒軗屢淮,則甲、乙二人搶到的金額之和不低于3元的概率是 ( )

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊(cè)答案