【題目】函數(shù)f(x)=x|x|.若存在x∈[1,+∞),使得f(x﹣2k)﹣k<0,則k的取值范圍是(
A.(2,+∞)
B.(1,+∞)
C.( ,+∞)
D.( ,+∞)

【答案】D
【解析】解:根據(jù)題意,x∈[1,+∞)時,x﹣2k∈[1﹣2k,+∞);

①當(dāng)1﹣2k≤0時,解得k≥ ;存在x∈[1,+∞),使得f(x﹣2k)﹣k<0,

即只要f(1﹣2k)﹣k<0即可;

∵1﹣2k≤0,∴f(1﹣2k)=﹣(1﹣2k)2,

∴﹣(1﹣2k)2﹣k<0,整理得﹣1+4k﹣4k2﹣k<0,即4k2﹣3k+1>0;

∵△=(﹣3)2﹣16=﹣7<0,

∴不等式對一切實數(shù)都成立,∴k≥ ;

②當(dāng)1﹣2k>0時,解得k< ;

存在x∈[1,+∞),使得f(x﹣2k)﹣k<0,

即只要f(1﹣2k)﹣k<0即可;

∵1﹣2k>0,∴f(1﹣2k)=(1﹣2k)2,

∴(1﹣2k)2﹣k<0,整理得4k2﹣5k+1<0,解得 <k<1;

又∵k< ,∴ <k< ;

綜上,k∈( , )∪[ ,+∞)=( +∞);

∴k的取值范圍是k∈( ,+∞).

故選:D.

根據(jù)題意x∈[1,+∞)時,x﹣2k∈[1﹣2k,+∞);討論①1﹣2k≤0時和②1﹣2k>0時,存在x∈[1,+∞),使f(x﹣2k)﹣k<0時k的取值范圍即可.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系xOy中,已知圓C1的參數(shù)方程為 為參數(shù)),以坐標(biāo)原點為極點,x軸的正半軸為極軸建立極坐標(biāo)系,直線C2的極坐標(biāo)方程為ρcosθ+2=0.
(1)求C1的極坐標(biāo)方程與C2的直角坐標(biāo)方程;
(2)若直線C3的極坐標(biāo)方程為 ,設(shè)C3與C1的交點為M,N,P為C2上的一點,且△PMN的面積等于1,求P點的直角坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知△ABC的直角頂點A在y軸上,點B(1,0),D為斜邊BC的中點,且AD平行于x軸.
(1)求點C的軌跡方程;
(2)設(shè)點C的軌跡為曲線Γ,直線BC與Γ的另一個交點為E,以CE為直徑的圓交y軸于點M,N,記圓心為P,∠MPN=α,求α的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=xlnx+ax+b在(1,f(1))處的切線為2x﹣2y﹣1=0.
(1)求f(x)的單調(diào)區(qū)間與最小值;
(2)求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某大學(xué)為調(diào)研學(xué)生在A,B兩家餐廳用餐的滿意度,從在A,B兩家餐廳都用過餐的學(xué)生中隨機抽取了100人,每人分別對這兩家餐廳進(jìn)行評分,滿分均為60分.整理評分?jǐn)?shù)據(jù),將分?jǐn)?shù)以10為組距分成6組:[0,10),[10,20),[20,30),[30,40),[40,50),[50,60],得到A餐廳分?jǐn)?shù)的頻率分布直方圖,和B餐廳分?jǐn)?shù)的頻數(shù)分布表:

B餐廳分?jǐn)?shù)頻數(shù)分布表

分?jǐn)?shù)區(qū)間

頻數(shù)

[0,10)

2

[10,20)

3

[20,30)

5

[30,40)

15

[40,50)

40

[50,60]

35


(Ⅰ)在抽樣的100人中,求對A餐廳評分低于30的人數(shù);
(Ⅱ)從對B餐廳評分在[0,20)范圍內(nèi)的人中隨機選出2人,求2人中恰有1人評分在[0,10)范圍內(nèi)的概率;
(Ⅲ)如果從A,B兩家餐廳中選擇一家用餐,你會選擇哪一家?說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)集合A2n={1,2,3,…,2n}(n∈N* , n≥2).如果對于A2n的每一個含有m(m≥4)個元素的子集P,P中必有4個元素的和等于4n+1,稱正整數(shù)m為集合A2n的一個“相關(guān)數(shù)”. (Ⅰ)當(dāng)n=3時,判斷5和6是否為集合A6的“相關(guān)數(shù)”,說明理由;
(Ⅱ)若m為集合A2n的“相關(guān)數(shù)”,證明:m﹣n﹣3≥0;
(Ⅲ)給定正整數(shù)n.求集合A2n的“相關(guān)數(shù)”m的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)= ﹣2x+1. (Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)當(dāng)0<a≤ 時,求函數(shù)f(x)在區(qū)間[﹣a,a]上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) 的最小正周期為4π,則( )
A.函數(shù)f(x)的圖象關(guān)于原點對稱
B.函數(shù)f(x)的圖象關(guān)于直線 對稱
C.函數(shù)f(x)圖象上的所有點向右平移 個單位長度后,所得的圖象關(guān)于原點對稱
D.函數(shù)f(x)在區(qū)間(0,π)上單調(diào)遞增

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=sinxsin x. (Ⅰ)求f(x)的最小正周期;
(Ⅱ)求f(x)的單調(diào)遞增區(qū)間.

查看答案和解析>>

同步練習(xí)冊答案