橫峰中學(xué)將在四月份舉行安全知識(shí)大獎(jiǎng)賽,比賽分初賽和決賽兩部分.為了增加節(jié)目的趣味性,初賽采用選手選一題答一題的方式進(jìn)行,每位選手最多有5次選題答題的機(jī)會(huì),選手累計(jì)答對(duì)3題或答錯(cuò)3題即終止其初賽的比賽,答對(duì)3題者直接進(jìn)入決賽,答錯(cuò)3題者則被淘汰.已知選手甲答題的正確率為
(Ⅰ)求選手甲可進(jìn)入決賽的概率;
(Ⅱ)設(shè)選手甲在初賽中答題的個(gè)數(shù)為,試寫出的分布列,并求的數(shù)學(xué)期望.
(Ⅰ) 選手甲答道題進(jìn)入決賽的概率為;   ……………1分
選手甲答道題進(jìn)入決賽的概率為;…………………………3分
選手甲答5道題進(jìn)入決賽的概率為;  …………………5分
∴選手甲可進(jìn)入決賽的概率++.       …………………7分
(Ⅱ)依題意,的可能取值為.則有,               
,       
, …………………………10分
因此,有
ξ
3
4
5
P



練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

甲乙兩隊(duì)參加奧運(yùn)知識(shí)競(jìng)賽,每隊(duì)三人,每人回答一個(gè)問題,答對(duì)者為本隊(duì)贏得一分,答錯(cuò)得零分.假設(shè)甲隊(duì)中每人答對(duì)的概率均為,乙隊(duì)中三人答對(duì)的概率分別為,且各人回答得正確與否相互之間沒有影響.
(1)若用表示甲隊(duì)的總得分,求隨機(jī)變量分布列和數(shù)學(xué)期望;
(2)用表示事件“甲、乙兩隊(duì)總得分之和為”,用表示事件“甲隊(duì)總得分大于乙隊(duì)總得分”,求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,一個(gè)小球從M處投入,通過管道自上而下落ABC。已知小球從每個(gè)叉口落入左右兩個(gè) 管道的可能性是相等的.某商家按上述投球方式進(jìn)行促銷活動(dòng),若投入的小球落到A,B,C,則分別設(shè)為l,

2,3等獎(jiǎng).(I)已知獲得l,2,3等獎(jiǎng)的折扣率分別為50%,70%,90%.記隨變量為獲得k(k=1,2,3)等獎(jiǎng)的折扣率,求隨機(jī)變量的分布列及期望;(II)若有3人次(投入l球?yàn)閘人次)參加促銷活動(dòng),記隨機(jī)變量為獲得1等獎(jiǎng)或2等獎(jiǎng)的人次,求

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

張先生家住H小區(qū),他在C科技園區(qū)工作,從家開車到公司上班有L1L2兩條路線(如圖),L1路線上有A1,A2,A3三個(gè)路口,各路口遇到紅燈的概率均為;L2路線上有B1,B2兩個(gè)路口,各路口遇到紅燈的概率依次為,
(Ⅰ)若走L1路線,求最多遇到1次紅燈的概率;
(Ⅱ)若走L2路線,求遇到紅燈次數(shù)的數(shù)學(xué)期望;
(Ⅲ)按照“平均遇到紅燈次數(shù)最少”的要求,請(qǐng)你
幫助張先生從上述兩條路線中選擇一條最好的上班路線,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

為把中國(guó)武漢大學(xué)辦成開放式大學(xué),今年櫻花節(jié)武漢大學(xué)在其屬下的藝術(shù)學(xué)院和文學(xué)院分別招募8名和12名志愿者從事兼職導(dǎo)游工作,將這20志愿者的身高編成如下莖葉圖(單位:厘米)若身高在175cm及其以上定義為“高個(gè)子”,否則定義為“非高個(gè)子”且只有文學(xué)院的“高個(gè)子”才能擔(dān)任兼職導(dǎo)游。
(1)根據(jù)志愿者的身高莖葉圖指出文學(xué)院志愿者身高的中位數(shù)
(2)如果用分層抽樣的方法從“高個(gè)子”和“非高個(gè)子”中抽取5人,再?gòu)倪@5人中選2人,那么至少有一人是“高個(gè)子”的概率是多少
(3)若從所有“高個(gè)子”中選3名志愿者。用表示所選志愿者中能擔(dān)任“兼職導(dǎo)游”的人數(shù),試寫出的分布列,并求的數(shù)學(xué)期望

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)張師傅駕車從公司開往火車站,途徑4個(gè)交通崗,這4個(gè)交通崗將公司到火車站分成5個(gè)時(shí)段,每個(gè)時(shí)段的駕車時(shí)間都是3分鐘,如果遇到紅燈要停留1分鐘。假設(shè)他在各交通崗遇到紅燈是相互獨(dú)立的,并且概率都是
(1)求張師傅此行程時(shí)間不小于16分鐘的概率;
(2)記張師傅此行程所需時(shí)間為Y分鐘,求Y的分布列和均值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

某商場(chǎng)“五一”期間舉行有獎(jiǎng)促銷活動(dòng),顧客只要在商店購(gòu)物滿800元就能得到一次摸獎(jiǎng)機(jī)會(huì).摸獎(jiǎng)規(guī)則是:在盒子內(nèi)預(yù)先放有5個(gè)大小相同的球,其中一個(gè)球標(biāo)號(hào)是0,兩個(gè)球標(biāo)號(hào)都是40,還有兩個(gè)球沒有標(biāo)號(hào)。顧客依次從盒子里摸球,每次摸一個(gè)球(不放回),若累計(jì)摸到兩個(gè)沒有標(biāo)號(hào)的球就停止摸球,否則將盒子內(nèi)球摸完才停止.獎(jiǎng)金數(shù)為摸出球的標(biāo)號(hào)之和(單位:元),已知某顧客得到一次摸獎(jiǎng)機(jī)會(huì)。
(1)求該顧客摸三次球被停止的概率;
(2)設(shè)為該顧客摸球停止時(shí)所得的獎(jiǎng)金數(shù),求的分布列及均值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

某人投籃一次命中概率為,共投籃7次。
(1)試問至多有1次命中的概率;
(2)試問出現(xiàn)命中次數(shù)為奇數(shù)的概率與命中次數(shù)為偶數(shù)的概率是否相等?請(qǐng)說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

下面玩擲骰子放球的游戲:若擲出1點(diǎn),甲盒中放入一球;若擲出2點(diǎn)或是3點(diǎn),乙盒中放入一球;若擲出4點(diǎn)或5點(diǎn)或6點(diǎn),丙盒中放入一球.設(shè)擲n次后,甲、乙、丙盒內(nèi)的球數(shù)分別為x,y,z.
(1)當(dāng)n=3時(shí),求x、y、z成等差數(shù)列的概率;
(2)當(dāng)n=6時(shí),求x、y、z成等比數(shù)列的概率;
(3)設(shè)擲4次后,甲盒和乙盒中球的個(gè)數(shù)差的絕對(duì)值為ξ,求Eξ.

查看答案和解析>>

同步練習(xí)冊(cè)答案