已知三棱錐的底面是直角三角形,且平面,是線段的中點(diǎn),如圖所示.

(Ⅰ)證明:平面;
(Ⅱ)求三棱錐的體積.
(1)證明線面垂直一般通過線線垂直來證明線面垂直,關(guān)鍵是對(duì)于的證明。
(2)

試題分析:(Ⅰ)證明:因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011830922514.png" style="vertical-align:middle;" />,D是線段PC的中點(diǎn),所以 (1)
因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824011830953526.png" style="vertical-align:middle;" />,,所以平面 可得    (2)
由(1)(2)得平面                            (6)
(Ⅱ)因?yàn)辄c(diǎn)是線段的中點(diǎn),所以點(diǎn)到平面的距離等于點(diǎn)到平面的距離的一半。因此                         (9)
,又,且,
所以   即得即三棱錐的體積為.       12分
點(diǎn)評(píng):解決關(guān)鍵是利用線面垂直的判定定理來證明垂直,同時(shí)利用的等體積法來求解 錐體的體積,屬于基礎(chǔ)題。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

關(guān)于兩條不同的直線,與兩個(gè)不同的平面,,下列正確的是(     )
A.,則
B.,則
C.,則
D.,則

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖所示的幾何體中,四邊形為矩形,為直角梯形,且 = = 90°,平面平面,,

(1)若的中點(diǎn),求證:平面;
(2)求平面與平面所成銳二面角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

是空間三條不同的直線,是空間兩個(gè)不同的平面,則下列命題中,逆命題不正確的是(  )
A.當(dāng)時(shí),若,則
B.當(dāng)時(shí),若,則
C.當(dāng)內(nèi)的射影時(shí),若,則
D.當(dāng)時(shí),若,則

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在四棱錐中,底面是矩形,側(cè)棱⊥底面,的中點(diǎn),的中點(diǎn).

(1)證明:平面
(2)若為直線上任意一點(diǎn),求幾何體的體積;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

用平行于棱錐底面的平面去截棱錐,則截面與底面之間的部分叫棱臺(tái)。
如圖,在四棱臺(tái)中,下底是邊長(zhǎng)為的正方形,上底是邊長(zhǎng)為1的正方形,側(cè)棱⊥平面.

(Ⅰ)求證:平面;
(Ⅱ)求平面與平面夾角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

長(zhǎng)方體中,底面是正方形,,上的一點(diǎn).

⑴求異面直線所成的角;
⑵若平面,求三棱錐的體積;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在棱長(zhǎng)為1的正方體中.

⑴求異面直線所成的角;
⑵求證:平面平面

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,平面ABCD⊥平面ABEF,又ABCD是正方形,ABEF是矩形,且GEF的中
點(diǎn).

(1)求證:平面AGC⊥平面BGC;
(2)求GB與平面AGC所成角的正弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案