如圖,正方形ADEF與梯形ABCD所在平面互相垂直,AD⊥CD,AB//CD,AB=AD=,點(diǎn)M在線段EC上且不與E、C垂合.
(1)當(dāng)點(diǎn)M是EC中點(diǎn)時(shí),求證:BM//平面ADEF;
(2)當(dāng)平面BDM與平面ABF所成銳二面角的余弦值為時(shí),求三棱錐M—BDE的體積

(1)詳見解析;(2)

解析試題分析:以、分別為軸建立空間直角坐如圖,
(1)要證,只要證明向量與平面的法向量垂直即可;
(2)設(shè),設(shè)面的法向量,
利用向量的數(shù)量積求得,而平面的法向量
,解出的值,從而確定點(diǎn)位置,進(jìn)而求出也即三棱錐M—BDE的體積.
試題解析:

(1)以、分別為軸建立空間直角坐標(biāo)系

所以,面的一個(gè)法向量
所以,即                  4分
(2)依題意設(shè),設(shè)面的法向量

,則,面的法向量
,解得
為EC的中點(diǎn),到面的距離
              12分
考點(diǎn):1、空間直角坐標(biāo)系;2、向量法解決空間的平行、垂直與夾角問(wèn)題;3、空間幾何體的體積.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,為圓的直徑,為圓周上異于、的一點(diǎn),垂直于圓所在的平面,
點(diǎn),于點(diǎn).
(1)求證:平面;
(2)若,,求四面體的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,四邊形ABCD為正方形,QA⊥平面ABCD,PD∥QA,QA=AB=PD.

(1)證明:PQ⊥平面DCQ;
(2)求棱錐Q­ABCD的體積與棱錐P­DCQ的體積的比值.[來(lái)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖2,四邊形為矩形,平面,,,作如圖3折疊,折痕.其中點(diǎn)、分別在線段上,沿折疊后點(diǎn)在線段上的點(diǎn)記為,并且.

(1)證明:平面;
(2)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,四棱錐P-ABCD中,底面ABCD為正方形,DA⊥面ABP,AB=1,PA=2,∠PAB=60°.
(1)求證:平面PBC⊥面PDC
(2)設(shè)E為PC上一點(diǎn),若二面角B-EA-P的余弦值為-,求三棱錐E-PAB的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,△中,,,,在三角形內(nèi)挖去一個(gè)半圓(圓心在邊上,半圓與、分別相切于點(diǎn),與交于點(diǎn)),將△繞直線旋轉(zhuǎn)一周得到一個(gè)旋轉(zhuǎn)體.

(1)求該幾何體中間一個(gè)空心球的表面積的大;
(2)求圖中陰影部分繞直線旋轉(zhuǎn)一周所得旋轉(zhuǎn)體的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

一個(gè)球的外切正方體的全面積等于6cm,則此球的體積為____

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

若一個(gè)正三棱柱的三視圖及其尺寸如下圖所示(單位:cm),則該幾何體的體積是         


 

  
cm3.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

已知三個(gè)球的半徑,,滿足,則它們的表面積,,,滿足的等量關(guān)系是___________.

查看答案和解析>>

同步練習(xí)冊(cè)答案