精英家教網 > 高中數學 > 題目詳情
已知雙曲線x2=1的左頂點為A1,右焦點為F2,P為雙曲線右支上一點,則·的最小值為________.
-2
由題可知A1(-1,0),F2(2,0),
設P(x,y)(x≥1),則=(-1-x,-y),=(2-x,-y),·=(-1-x)(2-x)+y2=x2-x-2+y2=x2-x-2+3(x2-1)=4x2-x-5.
∵x≥1,函數f(x)=4x2-x-5的圖象的對稱軸為x=,∴當x=1時,·取得最小值-2.
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:解答題

已知橢圓C的焦點在x軸上,一個頂點的坐標是(0,1),離心率等于
2
5
5

(Ⅰ)求橢圓C的方程;
(Ⅱ)過橢圓C的右焦點F作直線l交橢圓C于A,B兩點,交y軸于M點,若
MA
=λ1
AF
,
MB
=λ2
BF
,求證:λ12為定值.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

巳知中心在坐標原點的雙曲線C與拋物線x2="2py(p" >0)有相同的焦點F,點A是兩曲線的交點,且AF丄y軸,則雙曲線的離心率為(   )
A.B.C.D.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

若雙曲線=1(a>b>0)的左、右焦點分別為F1、F2,線段F1F2被拋物線y2=2bx的焦點分成7∶5的兩段,則此雙曲線的離心率為(  )
A.B.C.D.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

已知雙曲線=1(a>0,b>0)的左、右焦點分別為F1、F2,過點F2作與x軸垂直的直線與雙曲線一個交點為P,且∠PF1F2,則雙曲線的漸近線方程為________.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

雙曲線x2+my2=1的虛軸長是實軸長的2倍,則雙曲線的漸近線方程為(  )
A.y=±2xB.y=±xC.y=±xD.y=±x

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

如圖,A,F分別是雙曲線的左頂點、右焦點,過F的直線與C的一條漸近線垂直且與另一條漸近線和y軸分別交于P,Q兩點.若AP⊥AQ,則C的離心率是(      )
A.B.C.D.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

已知雙曲線的一條漸近線方程為,則雙曲線離心率=(   )
A.B.C.D.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知雙曲線="1" 的兩個焦點為、,P是雙曲線上的一點,
且滿足 ,
(1)求的值;
(2)拋物線的焦點F與該雙曲線的右頂點重合,斜率為1的直線經過點F與該拋物線交于A、B兩點,求弦長|AB|.

查看答案和解析>>

同步練習冊答案