【題目】已知平面上兩點M(-5,0)和N(5,0),若直線上存在點P使|PM|-|PN|=6,則稱該直線為“單曲型直線”,下列直線中是“單曲型直線”的是( )
①; ②y=2; ③; ④.
A.①③ B. ③④ C.②③ D.①②
科目:高中數(shù)學 來源: 題型:
【題目】隨著科技的發(fā)展,網(wǎng)購已經(jīng)逐漸融入了人們的生活.在家里面不用出門就可以買到自己想要的東西,在網(wǎng)上付款即可,兩三天就會送到自己的家門口,如果近的話當天買當天就能送到,或者第二天就能送到,所以網(wǎng)購是非常方便的購物方式.某公司組織統(tǒng)計了近五年來該公司網(wǎng)購的人數(shù)(單位:人)與時間(單位:年)的數(shù)據(jù),列表如下:
1 | 2 | 3 | 4 | 5 | |
24 | 27 | 41 | 64 | 79 |
(1)依據(jù)表中給出的數(shù)據(jù),是否可用線性回歸模型擬合與的關系,請計算相關系數(shù)并加以說明(計算結果精確到0.01).(若,則線性相關程度很高,可用線性回歸模型擬合)
附:相關系數(shù)公式 ,參考數(shù)據(jù).
(2)建立關于的回歸方程,并預測第六年該公司的網(wǎng)購人數(shù)(計算結果精確到整數(shù)).
(參考公式: ,)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】非空有限集合是由若干個正實數(shù)組成,集合的元素個數(shù).對于任意,數(shù)或中至少有一個屬于,稱集合是“好集”:否則,稱集合是“壞集”.
(1)判斷和是“好集”,還是“壞集”;
(2)題設的有限集合中,既有大于1的元素,又有小于1的元素,證明:集合是“壞集”.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知:橢圓的焦點在軸上,左焦點與短軸兩頂點圍成面積為的等腰直角三角形,直線與橢圓交于不同兩點、(、都在軸上方),且.
(1)求橢圓的標準方程;
(2)當為橢圓與軸正半軸的交點時,求直線的方程;
(3)對于動直線,是否存在一個定點,無論如何變化,直線總經(jīng)過此定點?若存在,求出該定點的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設,為不同的兩點,直線,,以下命題中正確的序號為__________.
(1)不論為何值,點N都不在直線上;
(2)若,則過M,N的直線與直線平行;
(3)若,則直線經(jīng)過MN的中點;
(4)若,則點M、N在直線的同側且直線與線段MN的延長線相交.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】有一種大型商品,、兩地都有出售,且價格相同,現(xiàn)地的居民從、兩地之一購得商品后回運的運費是:地每公里的運費是地運費的倍,已知、兩地相距,居民選擇或地購買這種商品的標準是:包括運費和價格的總費用較低.
(1)求地的居民選擇地或地購物總費用相等時,點所在曲線的形狀;
(2)指出上述曲線內(nèi)、曲線外的居民應如何選擇購貨地點.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】若圓經(jīng)過坐標原點和點,且與直線相切, 從圓外一點向該圓引切線,為切點,
(Ⅰ)求圓的方程;
(Ⅱ)已知點,且, 試判斷點是否總在某一定直線上,若是,求出的方程;若不是,請說明理由;
(Ⅲ)若(Ⅱ)中直線與軸的交點為,點是直線上兩動點,且以為直徑的圓過點,圓是否過定點?證明你的結論.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】關于曲線的下列說法:(1)關于點對稱;(2)關于直線軸對稱;(3)關于直線對稱;(4)是封閉圖形,面積小于;(5)是封閉圖形,面積大于;(6)不是封閉圖形,無面積可言.其中正確的序號是________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com