(本小題滿分14分)
已知二次函數(shù),關(guān)于的不等式的解集為,其中為非零常數(shù).設(shè).
(1)求的值;
(2)R如何取值時(shí),函數(shù)存在極值點(diǎn),并求出極值點(diǎn);
(3)若,且,求證:N
(1)(2)當(dāng)時(shí),取任意實(shí)數(shù), 函數(shù)有極小值點(diǎn);
當(dāng)時(shí),,函數(shù)有極小值點(diǎn),有極大值點(diǎn).
(其中, )
(3)① 當(dāng)時(shí),左邊,右邊,不等式成立;② 假設(shè)當(dāng)N時(shí),不等式成立,即,
則
.
也就是說,當(dāng)時(shí),不等式也成立.
由①②可得,對(duì)N,都成立.
【解析】
試題分析:(1)解:∵關(guān)于的不等式的解集為,
即不等式的解集為,
∴.
∴.
∴.
∴.
(2)解法1:由(1)得.
∴的定義域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2013040810114660933473/SYS201304081012246406668807_DA.files/image044.png">.
∴.
方程(*)的判別式
.
①時(shí),,方程(*)的兩個(gè)實(shí)根為
則時(shí),;時(shí),.
∴函數(shù)在上單調(diào)遞減,在上單調(diào)遞增.
∴函數(shù)有極小值點(diǎn).
②當(dāng)時(shí),由,得或,
若,則
故時(shí),,
∴函數(shù)在上單調(diào)遞增.
∴函數(shù)沒有極值點(diǎn).
若時(shí),
則時(shí),;時(shí),;時(shí),.
∴函數(shù)在上單調(diào)遞增,在上單調(diào)遞減,在上單調(diào)遞增.
∴函數(shù)有極小值點(diǎn),有極大值點(diǎn).
綜上所述, 當(dāng)時(shí),取任意實(shí)數(shù), 函數(shù)有極小值點(diǎn);
當(dāng)時(shí),,函數(shù)有極小值點(diǎn),有極大值點(diǎn).
(其中, )
解法2:由(1)得.
∴的定義域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2013040810114660933473/SYS201304081012246406668807_DA.files/image044.png">.
∴.
若函數(shù)存在極值點(diǎn)等價(jià)于函數(shù)有兩個(gè)不等的零點(diǎn),且
至少有一個(gè)零點(diǎn)在上.
令,
得, (*)
則,(**)
方程(*)的兩個(gè)實(shí)根為, .
設(shè),
①若,則,得,此時(shí),取任意實(shí)數(shù), (**)成立.
則時(shí),;時(shí),.
∴函數(shù)在上單調(diào)遞減,在上單調(diào)遞增.
∴函數(shù)有極小值點(diǎn).
②若,則得
又由(**)解得或,
故.
則時(shí),;時(shí),;時(shí),.
∴函數(shù)在上單調(diào)遞增,在上單調(diào)遞減,在上單調(diào)遞增.
∴函數(shù)有極小值點(diǎn),有極大值點(diǎn).
綜上所述, 當(dāng)時(shí),取任何實(shí)數(shù), 函數(shù)有極小值點(diǎn);
當(dāng)時(shí),,函數(shù)有極小值點(diǎn),有極大值點(diǎn)
(其中, )
(2)證法1:∵, ∴.
∴
.
令,
則
.
∵,
∴
.
∴,即.
證法2:下面用數(shù)學(xué)歸納法證明不等式.
① 當(dāng)時(shí),左邊,右邊,不等式成立;
② 假設(shè)當(dāng)N時(shí),不等式成立,即,
則
.
也就是說,當(dāng)時(shí),不等式也成立.
由①②可得,對(duì)N,都成立.
考點(diǎn):本小題主要考查二次函數(shù)、一元二次不等式、一元二次方程、函數(shù)應(yīng)用、均值不等式等基礎(chǔ)知識(shí)
點(diǎn)評(píng):本題計(jì)算量大,第二問中要對(duì)參數(shù)分情況討論再次加大了試題的難度,第三問數(shù)學(xué)歸納法用來證明和正整數(shù)有關(guān)的題目。本題還考查了數(shù)形結(jié)合、函數(shù)與方程、分類與整合、化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,以及抽象概括能力、推理論證能力、運(yùn)算求解能力、創(chuàng)新意識(shí)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
3 |
π |
4 |
π |
4 |
π |
2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本小題滿分14分)設(shè)橢圓C1的方程為(a>b>0),曲線C2的方程為y=,且曲線C1與C2在第一象限內(nèi)只有一個(gè)公共點(diǎn)P。(1)試用a表示點(diǎn)P的坐標(biāo);(2)設(shè)A、B是橢圓C1的兩個(gè)焦點(diǎn),當(dāng)a變化時(shí),求△ABP的面積函數(shù)S(a)的值域;(3)記min{y1,y2,……,yn}為y1,y2,……,yn中最小的一個(gè)。設(shè)g(a)是以橢圓C1的半焦距為邊長(zhǎng)的正方形的面積,試求函數(shù)f(a)=min{g(a), S(a)}的表達(dá)式。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011年江西省撫州市教研室高二上學(xué)期期末數(shù)學(xué)理卷(A) 題型:解答題
(本小題滿分14分)
已知=2,點(diǎn)()在函數(shù)的圖像上,其中=.
(1)證明:數(shù)列}是等比數(shù)列;
(2)設(shè),求及數(shù)列{}的通項(xiàng)公式;
(3)記,求數(shù)列{}的前n項(xiàng)和,并證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015屆山東省威海市高一上學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:解答題
(本小題滿分14分)
某網(wǎng)店對(duì)一應(yīng)季商品過去20天的銷售價(jià)格及銷售量進(jìn)行了監(jiān)測(cè)統(tǒng)計(jì)發(fā)現(xiàn),第天()的銷售價(jià)格(單位:元)為,第天的銷售量為,已知該商品成本為每件25元.
(Ⅰ)寫出銷售額關(guān)于第天的函數(shù)關(guān)系式;
(Ⅱ)求該商品第7天的利潤(rùn);
(Ⅲ)該商品第幾天的利潤(rùn)最大?并求出最大利潤(rùn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年廣東省高三下學(xué)期第一次月考文科數(shù)學(xué)試卷(解析版) 題型:解答題
(本小題滿分14分)已知的圖像在點(diǎn)處的切線與直線平行.
⑴ 求,滿足的關(guān)系式;
⑵ 若上恒成立,求的取值范圍;
⑶ 證明:()
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com