已知直棱柱的底面是邊長為3的正三角形,高為2,則其外接球的表面積
A.6仔 | B.8仔 | C.12仔 | D.16仔 |
D
解析考點(diǎn):球的體積和表面積.
專題:計(jì)算題.
分析:根據(jù)直棱柱的底面邊長及高,先得出棱柱底面外接圓的半徑及球心距,進(jìn)而求出三棱柱外接球的球半徑,代入球的表面積公式即可得到棱柱的外接球的表面積.
解答:解:由正三棱柱的底面邊長為3,
得底面所在平面截其外接球所成的圓O的半徑r=,
又由正三棱柱的側(cè)棱長為2
,則球心到圓O的球心距d=1,
根據(jù)球心距,截面圓半徑,球半徑構(gòu)成直角三角形,
滿足勾股定理,我們易得球半徑R滿足:
R2=r2+d2=4,R=2,
∴外接球的表面積S=4πR2=16π.
故答案為:D.
點(diǎn)評:本題考查的是棱柱的幾何特征及球的體積和表面積,考查數(shù)形結(jié)合思想、化歸與轉(zhuǎn)化思想,其中根據(jù)已知求出三棱柱的外接球半徑是解答本題的關(guān)鍵.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:單選題
如圖,將裝有水的長方體水槽固定底面一邊后傾斜一個小角度,則傾斜后水槽中的水形成的幾何體是( )
A.棱柱 | B.棱臺 | C.棱柱與棱錐的組合體 | D.不能確定 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com