18.函數(shù)y=$\sqrt{-{x}^{2}+4x}$的值域是(  )
A.(-∞,4]B.(-∞,2]C.[0,2]D.[0,4]

分析 配方即可得到-x2+4x=-(x-2)2+4,從而得出$0≤\sqrt{-{x}^{2}+4x}≤2$,即得出y的范圍,從而得出原函數(shù)的值域.

解答 解:-x2+4x=-(x-2)2+4;
∴0≤-x2+4x≤4;
∴$0≤\sqrt{-{x}^{2}+4x}≤2$;
∴函數(shù)$y=\sqrt{-{x}^{2}+4x}$的值域?yàn)閇0,2].
故選C.

點(diǎn)評(píng) 考查函數(shù)值域的概念及求法,配方法求二次函數(shù)的值域,以及不等式的性質(zhì).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知函數(shù)f(x)=ax2+bx(a≠0)的導(dǎo)函數(shù)f′(x)=-2x+7,數(shù)列{an}的前n項(xiàng)和為Sn,點(diǎn)Pn(n,Sn)(n∈N*)均在函數(shù)y=f(x)的圖象上.
(1)求數(shù)列{an}的通項(xiàng)公式及Sn的最大值;
(2)令bn=$\sqrt{2^{_{a_n}}}$,其中n∈N*,求{nbn}的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.已知a1=1,${a_n}=n({a_{n+1}}-{a_n})(n∈{N^*})$,則數(shù)列{an}的通項(xiàng)公式是( 。
A.nB.${(\frac{n+1}{n})^{n-1}}$C.n2D.2n-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.已知等差數(shù)列{an},an∈N*,Sn=$\frac{1}{8}$(an+2)2.若bn=$\frac{1}{2}$an-30,求數(shù)列 {bn}的前15項(xiàng)和的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.如圖所示,一個(gè)空間幾何體的正視圖和左視圖都是邊長(zhǎng)為2的正方形,俯視圖是一個(gè)直徑為2的圓,那么這個(gè)幾何體的體積為( 。
A.B.C.$\frac{4π}{3}$D.$\frac{2π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.已知兩圓的方程分別為x2+y2-4x=0和x2+y2-4y=0,則這兩圓公共弦的長(zhǎng)等于2$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.函數(shù)$f(x)=\frac{2}{x}$的單調(diào)遞減區(qū)間為( 。
A.(-∞,+∞)B.(-∞,0)∪(0,+∞)C.(-∞,0),(0,+∞)D.(0,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.在幾何體EFABCD中,矩形ABCD所在的平面和梯形ABEF所在的平面互相垂直,且AB∥EF,AB=2EF,設(shè)平面CBF將幾何體EFABCD分成的兩個(gè)錐體的體積分別為VF-ABCD,VF-CBE,求VF-ABCD:VF-CBE的值為( 。
A.2:1B.3:1C.4:1D.5:1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.一個(gè)半徑為$\sqrt{6}$的球的內(nèi)接正四棱柱的高為4,則該正四棱柱的表面積為( 。
A.24B.32C.36D.40

查看答案和解析>>

同步練習(xí)冊(cè)答案