在直角坐標系
xOy中,已知點
P,曲線
C的參數(shù)方程為
(
φ為參數(shù))。以原點為極點,
x軸的正半軸為極軸建立極坐標系,直線
l的極坐標方程為
。
(1)判斷點
P與直線
l的位置關系,說明理由;
(2)設直線
l與直線
C的兩個交點為
A、
B,求
的值。
試題分析:解:(1)直線
即
直線
的直角坐標方程為
,點
在直線
上。
(2)直線
的參數(shù)方程為
(
為參數(shù)),曲線C的直角坐標方程為
將直線
的參數(shù)方程代入曲線C的直角坐標方程,
有
,設兩根為
,
點評:解決的關鍵是對于直線的標準參數(shù)方程中參數(shù)t的幾何意義的運用屬于基礎題。
練習冊系列答案
相關習題
科目:高中數(shù)學
來源:不詳
題型:解答題
已知雙曲線
與橢圓
有相同的焦點,點
、
分別是橢圓的右、右頂點,若橢圓經(jīng)過點
.
(1)求橢圓的方程;
(2)已知
是橢圓的右焦點,以
為直徑的圓記為
,過點
引圓
的切線,求此切線的方程;
(3)設
為直線
上的點,
是圓
上的任意一點,是否存在定點
,使得
?若存在,求出定點
的坐標;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
拋物線
的準線與
軸交于
,焦點為
,若橢圓
以
、
為焦點、且離心率為
.
(1)當
時,求橢圓
的方程;
(2)若拋物線
與直線
及
軸所圍成的圖形的面積為
,求拋物線
和直線
的方程.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
已知雙曲線
的一條漸近線的斜率為
,且右焦點與拋物線
的焦點重合,則該雙曲線的方程為
.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知橢圓
:
,左、右兩個焦點分別為
、
,上頂點
,
為正三角形且周長為6.
(1)求橢圓
的標準方程及離心率;
(2)
為坐標原點,
是直線
上的一個動點,求
的最小值,并求出此時點
的坐標.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
在平面直角坐標系
中,點
到兩點
,
的距離之和等于4,設點
的軌跡為
.
(Ⅰ)寫出
的方程;
(Ⅱ)設直線
與
交于
兩點.
k為何值時
?此時
的值是多少?
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知
為橢圓
的左、右焦點,
是橢圓上一點,若
。
(1)求橢圓方程;
(2)若
求
的面積。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
已知橢圓
與曲線
的離心率互為倒數(shù),則
( )
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知中心在原點,焦點在坐標軸上的橢圓
,它的離心率為
,一個焦點和拋物線
的焦點重合,過直線
上一點
引橢圓
的兩條切線,切點分別是
.
(Ⅰ)求橢圓
的方程;
(Ⅱ)若在橢圓
上的點
處的橢圓的切線方程是
. 求證:直線
恒過定點
;并出求定點
的坐標.
(Ⅲ)是否存在實數(shù)
,使得
恒成立?(點
為直線
恒過的定點)若存在,求出
的值;若不存在,請說明理由。
查看答案和解析>>