【題目】已知二次函數(shù)和函數(shù),

1)若為偶函數(shù),試判斷的奇偶性;

2)若方程有兩個(gè)不等的實(shí)根,則

①試判斷函數(shù)在區(qū)間上是否具有單調(diào)性,并說明理由;

②若方程的兩實(shí)根為求使成立的的取值范圍.

【答案】1)奇函數(shù); 2)①是單調(diào)函數(shù),理由見解析

【解析】

(1)若為偶函數(shù),則此時(shí)滿足為奇函數(shù);

(2)①由得有不等實(shí)根,整理后得一二次方程,故可得,其為一關(guān)于的關(guān)系式,從中整理 得出對(duì)稱軸的范圍,知其不在區(qū)間上,故可證得函數(shù)在區(qū)間上具有單調(diào)性.

②方程為二次函數(shù)其兩實(shí)根為,若成立,即在兩根之間,可由根的分布的相關(guān)知識(shí)將這一關(guān)系轉(zhuǎn)化為不等式,解出的范圍

(1)若為偶函數(shù),則,

,解得:,

此時(shí)滿足,

為奇函數(shù);

(2)①由得方程(*)有不等實(shí)根

的對(duì)稱軸

上是單調(diào)函數(shù)

是方程(*)的根,

,同理

同理

要使,

當(dāng)時(shí),即,解得

當(dāng)時(shí),即,解集為

的取值范圍

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某班同學(xué)利用國(guó)慶節(jié)進(jìn)行社會(huì)實(shí)踐,對(duì)[25,55]歲的人群隨機(jī)抽取人進(jìn)行了一次生活習(xí)慣是否符合低碳觀念的調(diào)查,若生活習(xí)慣符合低碳觀念的稱為低碳族,否則稱為非低碳族,得到如下統(tǒng)計(jì)表和各年齡段人數(shù)頻率分布直方圖:

組數(shù)

分組

低碳族的人數(shù)

占本組的頻率

第一組

[25,30)

120

0.6

第二組

[30,35)

195

第三組

[3540)

100

0.5

第四組

[40,45)

0.4

第五組

[4550)

30

0.3

第六組

[50,55]

15

0.3

(1)補(bǔ)全頻率分布直方圖并求 的值;

(2)從年齡段在[40,50)低碳族中采用分層抽樣法抽取6人參加戶外低碳體驗(yàn)活動(dòng),其中選取2人作為領(lǐng)隊(duì),求選取的2名領(lǐng)隊(duì)中恰有1人年齡在[445)歲的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在直角坐標(biāo)系中,曲線的參數(shù)方程為t為參數(shù),),以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程是.

(Ⅰ)當(dāng)時(shí),直接寫出的普通方程和極坐標(biāo)方程,直接寫出的普通方程;

(Ⅱ)已知點(diǎn) ,且曲線交于兩點(diǎn),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線方程為x2=2py(p>0),M為直線y=-2p上任一點(diǎn),過M引拋物線的切線,切點(diǎn)分別為AB.求證:A,M,B三點(diǎn)的橫坐標(biāo)成等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線C的頂點(diǎn)為坐標(biāo)原點(diǎn)O,對(duì)稱軸為x軸,其準(zhǔn)線過點(diǎn).

(1)求拋物線C的方程;

(2)過拋物線焦點(diǎn)F作直線l,使得拋物線C上恰有三個(gè)點(diǎn)到直線l的距離都為,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司為確定下一年度投入某種產(chǎn)品的宣傳費(fèi),需了解年宣傳費(fèi)(單位:千元)對(duì)年銷售量(單位:)和年利潤(rùn)(單位:千元)的影響,對(duì)近8年的宣傳費(fèi)和年銷售量數(shù)據(jù)作了初步處理,得到下面的散點(diǎn)圖及一些統(tǒng)計(jì)量的值.

46.6

563

6.8

289.8

1.6

1469

108.8

表中,

附:對(duì)于一組數(shù)據(jù),其回歸線的斜率和截距的最小二乘估計(jì)分別為:

1)根據(jù)散點(diǎn)圖判斷,,哪一個(gè)適宜作為年銷售量關(guān)于年宣傳費(fèi)的回歸方程類型(給出判斷即可,不必說明理由);

2)根據(jù)(1)的判斷結(jié)果及表中數(shù)據(jù),建立關(guān)于的回歸方程;

3)已知這種產(chǎn)品的年利潤(rùn)的關(guān)系為,根據(jù)(2)的結(jié)果回答:當(dāng)年宣傳費(fèi)時(shí),年銷售量及年利潤(rùn)的預(yù)報(bào)值是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,直線和曲線的參數(shù)方程分別為為參數(shù)),為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

(1)寫出直線、曲線的普通方程,以及曲線的直角坐標(biāo)方程;

(2)設(shè)直線與曲線,在第一象限內(nèi)的交點(diǎn)分別為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】響應(yīng)“文化強(qiáng)國(guó)建設(shè)”號(hào)召,某市把社區(qū)圖書閱覽室建設(shè)增列為重要的民生工程.為了解市民閱讀需求,隨機(jī)抽取市民200人做調(diào)查,統(tǒng)計(jì)數(shù)據(jù)表明,樣本中所有人每天用于閱讀的時(shí)間(簡(jiǎn)稱閱讀用時(shí))都不超過3小時(shí),其頻數(shù)分布表如下:(用時(shí)單位:小時(shí))

用時(shí)分組

頻數(shù)

10

20

50

60

40

20

(1)用樣本估計(jì)總體,求該市市民每天閱讀用時(shí)的平均值;

(2)為引導(dǎo)市民積極參與閱讀,有關(guān)部門牽頭舉辦市讀書經(jīng)驗(yàn)交流會(huì),從這200人中篩選出男女代表各3名,其中有2名男代表和1名女代表喜歡古典文學(xué).現(xiàn)從這6名代表中任選2名男代表和2名女代表參加交流會(huì),求參加交流會(huì)的4名代表中,喜歡古典文學(xué)的男代表多于喜歡古典文學(xué)的女代表的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,底面是平行四邊形,,側(cè)面底面,分別為,的中點(diǎn),點(diǎn)在線段上.

Ⅰ)求證:平面

Ⅱ)若的中點(diǎn),求證:平面

Ⅲ)如果直線與平面所成的角和直線與平面所在的角相等,求的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案