定義函數(shù)且函數(shù)y在區(qū)間[37]上是增函數(shù),最小值為5,那么函數(shù)y在區(qū)間[7,-3]

[  ]

A.為增函數(shù),且最小值為-5

B.為增函數(shù),且最大值為-5

C.為減函數(shù),有最小值為-5

D.為減函數(shù),且最大值為-5

答案:B
解析:

可利用函數(shù)的對(duì)稱性畫出函數(shù)的圖像.


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2008•奉賢區(qū)模擬)我們將具有下列性質(zhì)的所有函數(shù)組成集合M:函數(shù)y=f(x)(x∈D),對(duì)任意x,y,
x+y
2
∈D
均滿足f(
x+y
2
)≥
1
2
[f(x)+f(y)]
,當(dāng)且僅當(dāng)x=y時(shí)等號(hào)成立.
(1)若定義在(0,+∞)上的函數(shù)f(x)∈M,試比較f(3)+f(5)與2f(4)大。
(2)給定兩個(gè)函數(shù):f1(x)=
1
x
(x>0)
,f2(x)=logax(a>1,x>0).證明:f1(x)∉M,f2(x)∈M.
(3)試?yán)茫?)的結(jié)論解決下列問題:若實(shí)數(shù)m、n滿足2m+2n=1,求m+n的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•順義區(qū)二模)設(shè)定義在R上的函數(shù)f(x)是最小正周期為2π的偶函數(shù),f′(x)是f(x)的導(dǎo)函數(shù).當(dāng)x∈[0,π]時(shí),0<f(x)<1;當(dāng)x∈(0,π)且x≠
π
2
時(shí),(x-
π
2
)f′(x)<0
.則函數(shù)y=f(x)-cosx在[-3π,3π]上的零點(diǎn)個(gè)數(shù)為
6
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2008•奉賢區(qū)一模)我們將具有下列性質(zhì)的所有函數(shù)組成集合M:函數(shù)y=f(x)(x∈D),對(duì)任意x,y,
x+y
2
∈D
均滿足f(
x+y
2
)≥
1
2
[f(x)+f(y)]
,當(dāng)且僅當(dāng)x=y時(shí)等號(hào)成立.
(1)若定義在(0,+∞)上的函數(shù)f(x)∈M,試比較f(3)+f(5)與2f(4)大。
(2)設(shè)函數(shù)g(x)=-x2,求證:g(x)∈M.
(3)已知函數(shù)f(x)=log2x∈M.試?yán)么私Y(jié)論解決下列問題:若實(shí)數(shù)m、n滿足2m+2n=1,求m+n的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2008•寶坻區(qū)一模)下列命題:
(1)若f(x)是定義在[-1,1]上的偶函數(shù),且在[-1,0]上是增函數(shù),θ∈(
π
4
,
π
2
)
,則f(sinθ)>f(cosθ);
(2)若銳角α,β滿足cosα>sinβ,則α+β<
π
2

(3)若f(x)=sin2xcos2x,則f(x)的最小正周期為
π
2
;
(4)要得到函數(shù)y=cos(
x
2
-
π
4
)的圖象只需將y=sin
x
2
的圖象向左平移
π
4
個(gè)單位.
其中正確命題的個(gè)數(shù)有
2
2
個(gè).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•青浦區(qū)一模)我們把定義在R上,且滿足f(x+T)=af(x)(其中常數(shù)a,T滿足a≠1,a≠0,T≠0)的函數(shù)叫做似周期函數(shù).
(1)若某個(gè)似周期函數(shù)y=f(x)滿足T=1且圖象關(guān)于直線x=1對(duì)稱.求證:函數(shù)f(x)是偶函數(shù);
(2)當(dāng)T=1,a=2時(shí),某個(gè)似周期函數(shù)在0≤x<1時(shí)的解析式為f(x)=x(1-x),求函數(shù)y=f(x),x∈[n,n+1),n∈Z的解析式;
(3)對(duì)于確定的T>0且0<x≤T時(shí),f(x)=3x,試研究似周期函數(shù)函數(shù)y=f(x)在區(qū)間(0,+∞)上是否可能是單調(diào)函數(shù)?若可能,求出a的取值范圍;若不可能,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案