【題目】已知命題p:“方程:表示焦點在x軸上的雙曲線”;命題q:“關(guān)于x的不等式x2+2ax+1≥0在R上恒成立”.
(1)若命題p為真命題,求實數(shù)a的取值范圍;
(2)若命題“p或q”為真命題,“p且q”為假命題,求實數(shù)a的取值范圍.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為(t為參數(shù)),以坐標(biāo)原點為極點,以軸正半軸為極軸,建立極坐標(biāo)系,圓的極坐標(biāo)方程為.
(Ⅰ)求的普通方程和的直角坐標(biāo)方程;
(Ⅱ)過曲線上任一點作與夾角為45°的直線,交于點,求的最大值與最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在平行四邊形中,點是邊的中點,將沿折起,使點到達(dá)點的位置,且
(1)求證; 平面平面;
(2)若平面和平面的交線為,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓(常數(shù)),P是曲線C上的動點,M是曲線C的右頂點,定點A的坐標(biāo)為.
(1)若M與A重合,求曲線C的焦距.
(2)若,求的最大值與最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將正方形ABCD沿對角線BD折成直二面角A-BD-C,有如下四個結(jié)論:
① ②是等邊三角形 ③AB與平面BCD所成的角是 ④AB與CD所成角為,其中錯誤的結(jié)論個數(shù)是( )
A.1B.2C.3D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對于任意的,若數(shù)列同時滿足下列兩個條件,則稱數(shù)列具有“性質(zhì)”.①;②存在實數(shù)使得.
(1)數(shù)列中,,判斷是否具有“性質(zhì)”.
(2)若各項為正數(shù)的等比數(shù)列的前項和為,且,證明:數(shù)列具有“性質(zhì)”,并指出的取值范圍.
(3)若數(shù)列的通項公式,對于任意的,數(shù)列具有“性質(zhì)”,且對滿足條件的的最小值,求整數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓M過兩點A(1,﹣1),B(﹣1,1),且圓心M在x+y﹣2=0上,
(Ⅰ)求圓M的方程;
(Ⅱ)設(shè)P是直線x+y+2=0上的動點.PC,PD是圓M的兩條切線,C,D為切點,求四邊形PCMD面積的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com