(05年山東卷理)(14分)

已知?jiǎng)訄A過定點(diǎn),且與直線相切,其中.

(I)求動(dòng)圓圓心的軌跡的方程;

(II)設(shè)A、B是軌跡上異于原點(diǎn)的兩個(gè)不同點(diǎn),直線的傾斜角分別為,當(dāng)變化且為定值時(shí),證明直線恒過定點(diǎn),并求出該定點(diǎn)的坐標(biāo).

 

 

解析:(I)如圖,設(shè)為動(dòng)圓圓心,記,過點(diǎn)作直線的垂線,垂足為,由題意知:即動(dòng)點(diǎn)到定點(diǎn)與定直線的距離相等

由拋物線的定義知,點(diǎn)的軌跡為拋物線,其中為焦點(diǎn),為準(zhǔn)線

∴軌跡方程為

(II)如圖,設(shè),由題意得(否則)且

∴直線的斜率存在,設(shè)其方程為

顯然

聯(lián)立消去,得

由韋達(dá)定理知   ①

(1)當(dāng)時(shí),即時(shí),

,

由①知:

因此直線的方程可表示為,即

∴直線恒過定點(diǎn)

(2)當(dāng)時(shí),由,得==

將①式代入上式整理化簡(jiǎn)可得:,則,

此時(shí),直線的方程可表示為

∴直線恒過定點(diǎn)

綜上,由(1)(2)知,當(dāng)時(shí),直線恒過定點(diǎn),當(dāng)時(shí)直線恒過定點(diǎn).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(09年江蘇百校樣本分析)(10分)挑選空軍飛行學(xué)員可以說是“萬里挑一”,要想通過需過“五關(guān)”――目測(cè)、初檢、復(fù)檢、文考、政審等. 某校甲、乙、丙三個(gè)同學(xué)都順利通過了前兩關(guān),有望成為光榮的空軍飛行學(xué)員. 根據(jù)分析,甲、乙、丙三個(gè)同學(xué)能通過復(fù)檢關(guān)的概率分別是0.5,0.6,0.75,能通過文考關(guān)的概率分別是0.6,0.5,0.4,通過政審關(guān)的概率均為1.后三關(guān)相互獨(dú)立.

(1)求甲、乙、丙三個(gè)同學(xué)中恰有一人通過復(fù)檢的概率;

(2)設(shè)通過最后三關(guān)后,能被錄取的人數(shù)為,求隨機(jī)變量的期望

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(09年江蘇百校樣本分析)(10分)(矩陣與變換)  給定矩陣  A= =

(1)求A的特征值、及對(duì)應(yīng)的特征向量;  

(2)求

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(08年莆田四中一模理) (14分)

由函數(shù)確定數(shù)列,若函數(shù)的反函數(shù) 能確定數(shù)列,,則稱數(shù)列是數(shù)列的“反數(shù)列”。

(1)若函數(shù)確定數(shù)列的反數(shù)列為,求的通項(xiàng)公式;

(2)對(duì)(1)中,不等式對(duì)任意的正整數(shù)恒成立,求實(shí)數(shù)的范圍;

(3)設(shè),若數(shù)列的反數(shù)列為,的公共項(xiàng)組成的數(shù)列為;求數(shù)列項(xiàng)和

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(05年遼寧卷)(12分)

已知函數(shù).設(shè)數(shù)列滿足,,數(shù)列滿足

,,

(Ⅰ)用數(shù)學(xué)歸納法證明;(Ⅱ)證明

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(05年湖北卷文)(12分)

設(shè)數(shù)列的前n項(xiàng)和為Sn=2n2,為等比數(shù)列,且

   (Ⅰ)求數(shù)列的通項(xiàng)公式;

   (Ⅱ)設(shè),求數(shù)列的前n項(xiàng)和Tn.

查看答案和解析>>

同步練習(xí)冊(cè)答案