【題目】已知拋物線的焦點(diǎn)為為拋物線上位于第一象限內(nèi)的點(diǎn),過(guò)點(diǎn)的直線交拋物線于另一點(diǎn),交軸的正半軸于點(diǎn)

(1)若點(diǎn)的橫坐標(biāo)為,且與雙曲線的實(shí)軸長(zhǎng)相等,求拋物線的方程;

(2)對(duì)于(1)中求出的拋物線,若點(diǎn),記點(diǎn)關(guān)于軸的對(duì)稱(chēng)點(diǎn)為(不同于點(diǎn)),直線軸于點(diǎn)

①求證:點(diǎn)的坐標(biāo)為;

②若,求點(diǎn)到直線的距離的取值范圍.

【答案】(1) (2) ①見(jiàn)證明; ②

【解析】

1)由題意得,故,于是可得拋物線方程.(2)①設(shè)直線的方程為,代入拋物線方程后得到關(guān)于的二次方程,然后結(jié)合根與系數(shù)的關(guān)系及三點(diǎn)共線并由向量的共線可證得結(jié)論成立;②由可得為等腰直角三角形,所以,整理可得,兩邊平方后結(jié)合根與系數(shù)的關(guān)系得到,且.再由題意得到,令,可得,最后構(gòu)造函數(shù)可得所求范圍.

(1)由題意,知

與雙曲線的實(shí)軸長(zhǎng)相等,

,解得,

∴拋物線的方程為

(2)①由題意,可設(shè)直線的方程為,

消去整理得

,

設(shè),則,

由題意得,

設(shè)點(diǎn)坐標(biāo)為,則,

由題意知,

,

,

顯然

,

∴點(diǎn)的坐標(biāo)為

②由題意,為等腰直角三角形,

,即,

,

,即,

,且,

,所以

又點(diǎn)到直線的距離

,則,且

設(shè),則上為減函數(shù),

,即,

的取值范圍為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)某校新、老校區(qū)之間開(kāi)車(chē)單程所需時(shí)間為,只與道路暢通狀況有關(guān),對(duì)其容量為的樣本進(jìn)行統(tǒng)計(jì),結(jié)果如圖:

(分鐘)

25

30

35

40

頻數(shù)(次)

20

30

40

10

1)求的分布列與數(shù)學(xué)期望;

2)劉教授駕車(chē)從老校區(qū)出發(fā),前往新校區(qū)做一個(gè)50分鐘的講座,結(jié)束后立即返回老校區(qū),求劉教授從離開(kāi)老校區(qū)到返回老校區(qū)共用時(shí)間不超過(guò)120分鐘的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如下圖,在四棱錐中,,,,,,的中點(diǎn)。

(1)求證:;

(2)線段上是否存在一點(diǎn),滿(mǎn)足?若存在,試求出二面角的余弦值;若不存在,說(shuō)明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】一個(gè)棱長(zhǎng)為的正方體形狀的鐵盒內(nèi)放置一個(gè)正四面體,且能使該正四面體在鐵盒內(nèi)任意轉(zhuǎn)動(dòng),則該正四面體的體積的最大值是_____.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)討論函數(shù)的單調(diào)性.

(2)當(dāng)時(shí),恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】經(jīng)過(guò)多年的努力,炎陵黃桃在國(guó)內(nèi)乃至國(guó)際上逐漸打開(kāi)了銷(xiāo)路,成為炎陵部分農(nóng)民脫貧致富的好產(chǎn)品.為了更好地銷(xiāo)售,現(xiàn)從某村的黃桃樹(shù)上隨機(jī)摘下了100個(gè)黃桃進(jìn)行測(cè)重,其質(zhì)量分布在區(qū)間內(nèi)(單位:克),統(tǒng)計(jì)質(zhì)量的數(shù)據(jù)作出其頻率分布直方圖如圖所示:

(1)按分層抽樣的方法從質(zhì)量落在的黃桃中隨機(jī)抽取5個(gè),再?gòu)倪@5個(gè)黃桃中隨機(jī)抽2個(gè),求這2個(gè)黃桃質(zhì)量至少有一個(gè)不小于400克的概率;

(2)以各組數(shù)據(jù)的中間數(shù)值代表這組數(shù)據(jù)的平均水平,以頻率代表概率,已知該村的黃桃樹(shù)上大約還有100000個(gè)黃桃待出售,某電商提出兩種收購(gòu)方案:

A.所有黃桃均以20/千克收購(gòu);

B.低于350克的黃桃以5/個(gè)收購(gòu),高于或等于350克的以9/個(gè)收購(gòu).

請(qǐng)你通過(guò)計(jì)算為該村選擇收益最好的方案.

參考數(shù)據(jù):

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公司培訓(xùn)員工某項(xiàng)技能,培訓(xùn)有如下兩種方式:

方式一:周一到周五每天培訓(xùn)1小時(shí),周日測(cè)試

方式二:周六一天培訓(xùn)4小時(shí),周日測(cè)試

公司有多個(gè)班組,每個(gè)班組60人,現(xiàn)任選兩組記為甲組、乙組先培訓(xùn);甲組選方式一,乙組選方式二,并記錄每周培訓(xùn)后測(cè)試達(dá)標(biāo)的人數(shù)如表:

第一周

第二周

第三周

第四周

甲組

20

25

10

5

乙組

8

16

20

16

用方式一與方式二進(jìn)行培訓(xùn),分別估計(jì)員工受訓(xùn)的平均時(shí)間精確到,并據(jù)此判斷哪種培訓(xùn)方式效率更高?

在甲乙兩組中,從第三周培訓(xùn)后達(dá)標(biāo)的員工中采用分層抽樣的方法抽取6人,再?gòu)倪@6人中隨機(jī)抽取2人,求這2人中至少有1人來(lái)自甲組的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)是圓上的動(dòng)點(diǎn),點(diǎn)軸上的投影,且.

1)當(dāng)在圓上運(yùn)動(dòng)時(shí),求點(diǎn)的軌跡的方程;

2)求過(guò)點(diǎn)(1,0),傾斜角為的直線被所截線段的長(zhǎng)度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)是定義在上的偶函數(shù),當(dāng)時(shí), .

1)直接寫(xiě)出函數(shù)的增區(qū)間(不需要證明);

(2)求出函數(shù), 的解析式;

3)若函數(shù), 求函數(shù)的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案