(本大題18分)
閱讀下面所給材料:已知數(shù)列{an},a1=2,an=3an–1+2,求數(shù)列的通項an。
解:令an=an–1=x,則有x=3x+2,所以x= –1,故原遞推式an=3an–1+2可轉(zhuǎn)化為:
an+1=3(an–1+1),因此數(shù)列{an+1}是首項為a1+1,公比為3的等比數(shù)列。
根據(jù)上述材料所給出提示,解答下列問題:
已知數(shù)列{an},a1=1,an=3an–1+4,
(1)求數(shù)列的通項an;并用解析幾何中的有關(guān)思想方法來解釋其原理;
(2)若記Sn=,求Sn;
(3)若數(shù)列{bn}滿足:b1=10,bn+1=100,利用所學(xué)過的知識,把問題轉(zhuǎn)化為可以用閱讀材料的提示,求出解數(shù)列{bn}的通項公式bn。
(1) 令an=an–1=x,則有x=3x+4,所以x= –2,故原遞推式an=3an–1+4可轉(zhuǎn)化為:
an+2=3(an–1+2),因此數(shù)列{an+2}是首項為a1+2,公比為3的等比數(shù)列。
所以an+2=(a1+2)´3n–1,所以an=3n–2;…………………………………………2分
對于an=3an–1+4,可以看成把直線y=3x+4的方程改寫成點斜式方程,
該點就是它與直線y=x的交點。……………………………………………………4分
(2)令dk==
=()2=()2(–)……………………………7分
Sn==d1+d2+……+dn
=()2[()+()+()+……+()]
=()2[]………………………………………………………………10分
Sn=()2……………………………………………………………………12分
(3)數(shù)列{bn}滿足:b1=10,bn+i=100,所以bn>0,lg bn+i =lg(100)
令cn=lgbn,則cn+1=3cn+2,………………………………………………………14分
所以cn+2=3(cn–1+2),因此數(shù)列{cn+2}是首項為c1+2,公比為3的等比數(shù)列。
所以cn+2=(c1+2)´3n–1,所以cn=3n–2,…………………………………………16分
lg bn=cn=3n–2;bn=…………………………………………………………18分
科目:高中數(shù)學(xué) 來源:2010年河南省實驗中學(xué)高二下學(xué)期期中考試數(shù)學(xué)(文) 題型:解答題
(本大題12分)己知下列三個方程,,
至少有一個方程有實根,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年大綱版高三上學(xué)期單元測試(1)數(shù)學(xué)試卷 題型:解答題
(本大題12分)用反證法證明:若..,且,
,,則..中至少有一個不小于0.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本大題18分)
(1)已知平面上兩定點.,且動點M標(biāo)滿足=0,求動點的軌跡方程;
(2)若把(1)的M的軌跡圖像向右平移一個單位,再向下平移一個單位,恰與直線x+ky–3=0 相切,試求實數(shù)k的值;
(3)如圖,l是經(jīng)過橢圓長軸頂點A且與長軸垂直的直線,E.F是兩個焦點,點PÎl,P不與A重合。若ÐEPF=,求的取值范圍。
并將此題類比到雙曲線:,是經(jīng)過焦點且與實軸垂直的直線,是兩個頂點,點PÎl,P不與重合,請作出其圖像。若,寫出角的取值范圍。(不需要解題過程)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com