【題目】已知命題p:x∈[1,2],x2﹣a≥0;命題q:x0∈R,使得 +(a﹣1)x0+1<0.若“p或q”為真,“p且q”為假,則實數(shù)a的取值范圍

【答案】﹣1≤a≤1或a>3
【解析】解:p真,則a≤1. q真,則△=(a﹣1)2﹣4>0
即a>3或a<﹣1
由復合命題真值表,“p或q”為真,“p且q”為假時,命題p,q一個為真,另一個為假,
當p真q假時,有
得﹣1≤a≤1,
當p假q真時,有
a>3.
綜上:實數(shù)a的取值范圍為﹣1≤a≤1或a>3
所以答案是:﹣1≤a≤1或a>3.
【考點精析】掌握復合命題的真假是解答本題的根本,需要知道“或”、 “且”、 “非”的真值判斷:“非p”形式復合命題的真假與F的真假相反;“p且q”形式復合命題當P與q同為真時為真,其他情況時為假;“p或q”形式復合命題當p與q同為假時為假,其他情況時為真.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】高一(1)班參加校生物競賽學生成績的莖葉圖和頻率分布直方圖都受到不同程度的破壞,但可見部分如圖,據(jù)此解答如下問題:
(1)求高一(1)班參加校生物競賽人數(shù)及分數(shù)在[80,90)之間的頻數(shù),并計算頻率分布直方圖中[80,90)間的矩形的高;
(2)若要從分數(shù)在[80,100]之間的學生中任選兩人進行某項研究,求至少有一人分數(shù)在[90,100]之間的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知等比數(shù)列{an}中,a1=64,公比q≠1,a2 , a3 , a4又分別是某個等差數(shù)列的第7項,第3項,第1項.
(1)求an;
(2)設bn=log2an , 求數(shù)列{|bn|}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知a,b,c分別是△ABC的三個內(nèi)角A,B,C所對的邊,且滿足(2b﹣a)cosC=ccosA. (Ⅰ)求角C的大;
(Ⅱ)設y=﹣4 sin2 +2sin(C﹣B),求y的最大值并判斷當y取得最大值時△ABC的形狀.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知 =(2cosx,sinx﹣cosx), =( sinx,sinx+cosx),記函數(shù)f(x)= . (Ⅰ)求f(x)的表達式,以及f(x)取最大值時x的取值集合;
(Ⅱ)設△ABC三內(nèi)角A,B,C的對應邊分別為a,b,c,若a+b=2 ,c= ,f(C)=2,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知在長方體ABCD﹣A1B1C1D1中,E,M,N分別是BC,AE,D1C的中點,AD=AA1 , AB=2AD. (Ⅰ)證明:MN∥平面ADD1A1;
(Ⅱ)求直線AD與平面DMN所成角θ的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在單調遞增數(shù)列{an}中,a1=2,a2=4,且a2n1 , a2n , a2n+1成等差數(shù)列,a2n , a2n+1 , a2n+2成等比數(shù)列,n=1,2,3,…. (Ⅰ)(。┣笞C:數(shù)列 為等差數(shù)列;
(ⅱ)求數(shù)列{an}的通項公式.
(Ⅱ)設數(shù)列 的前n項和為Sn , 證明:Sn ,n∈N*

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,為迎接校慶,我校準備在直角三角形ABC內(nèi)的空地上植造一塊“綠地△ABD”,規(guī)劃在△ABD的內(nèi)接正方形BEFG內(nèi)種花,其余地方種草,若AB=a,∠DAB=θ,種草的面積為S1 , 種花的面積為S2 , 比值 稱為“規(guī)劃和諧度”.

(1)試用a,θ表示S1 , S2;
(2)若a為定值,BC足夠長,當θ為何值時,“規(guī)劃和諧度”有最小值,最小值是多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在△ABC中,角A,B,C所對的邊分別為a,b,c,若acosA=bsinb,且 ,則sinA+sinC的最大值是

查看答案和解析>>

同步練習冊答案