17.已知sinθ+cosθ=2sinα,sin2θ=2sin2β,則( 。
A.cosβ=2cosαB.cos2β=2cos2αC.cos2β+2cos2α=0D.cos2β=2cos2α

分析 由題意利用同角三角函數(shù)的基本關(guān)系可得1+sin2θ=4sin2α,再利用二倍角公式化簡可得cos2α=cos2β,
從而得出結(jié)論.

解答 解:∵sinθ+cosθ=2sinα,sin2θ=2sin2β,
∴1+sin2θ=4sin2α,即1+2sin2β=4sin2α,即1+2•$\frac{1-cos2β}{2}$=4•$\frac{1-cos2α}{2}$,
化簡可得cos2α=2cos2β,
故選:D.

點評 本題主要考查同角三角函數(shù)的基本關(guān)系,二倍角公式的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知p:x≥m,q:|x-1|<1,若¬q是¬p的必要不充分條件,則實數(shù)m的取值范圍是m≤0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.給出下列四個結(jié)論:
①已知直線l1:ax+y+1=0,l2:x+ay+a2=0,則l1∥l2的充要條件為a=±1;
②函數(shù)f(x)=$\sqrt{3}$sinωx+cosωx滿足f(x+$\frac{π}{2}$)=-f(x),則函數(shù)f(x)的一個對稱中心為($\frac{π}{6}$,0);
③已知平面α和兩條不同的直線a,b,滿足b?α,a∥b,則a∥α;
④函數(shù)f(x)=$\frac{1}{x}$+lnx的單調(diào)區(qū)間為(0,1)∪(1,+∞).
其中正確命題的個數(shù)為( 。
A.4B.3C.2D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.函數(shù)f(x)的導(dǎo)函數(shù)為f′(x),對?x∈R,都有2f′(x)>f(x)成立,若f(ln4)=2,則不等式f(x)>e${\;}^{\frac{x}{2}}}$的解集是( 。
A.(1,+∞)B.(0,ln4)C.(ln4,+∞)D.(0,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.點P是雙曲線$\frac{x^2}{9}$-$\frac{y^2}{16}$=1的右支上一點,M是圓(x+5)2+y2=4上一點,點N的坐標(biāo)為(5,0),則|PM|-|PN|的最大值為(  )
A.5B.6C.7D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.求適合下列條件的橢圓的標(biāo)準(zhǔn)方程:
(1)焦點在x軸上,且經(jīng)過點(2,0)和點(0,1);
(2)焦點在y軸上,與y軸的一個交點為P(0,-10),P到它較近的一個焦點的距離等于2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.在△ABC中,a,b,c分別為角A,B,C所對的邊,S為△ABC的面積,且S=$\frac{{\sqrt{3}}}{4}$(a2-b2-c2).
(I)求角A的大;
(II)若a=2$\sqrt{7}$,b>c,D為BC的中點,且AD=$\sqrt{3}$,求sinC的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.若全集U={-1,0,1,2},P={x∈z|-$\sqrt{2}$<x$<\sqrt{2}$},則∁UP=(  )
A.{2}B.{0,2}C.{-1,2}D.{-1,0,2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.下面命題中假命題是( 。
A.?x∈R,3x>0
B.?α,β∈R,使sin(α+β)=sinα+sinβ
C.命題“?x∈R,x2+1>3x”的否定是“?x∈R,x2+1<3x”
D.?m∈R,使f(x)=mx${\;}^{{m}^{2}+2m}$是冪函數(shù),且在(0,+∞)上單調(diào)遞增

查看答案和解析>>

同步練習(xí)冊答案