【題目】已知橢圓的離心率為,右焦點(diǎn)為,左頂點(diǎn)為A,右頂點(diǎn)B在直線上.

(Ⅰ)求橢圓C的方程;

(Ⅱ)設(shè)點(diǎn)P是橢圓C上異于AB的點(diǎn),直線交直線于點(diǎn),當(dāng)點(diǎn)運(yùn)動時(shí),判斷以為直徑的圓與直線PF的位置關(guān)系,并加以證明.

【答案】(Ⅰ);(Ⅱ)以BD為直徑的圓與直線PF相切.

【解析】

(Ⅰ)根據(jù)條件解得a,b值,(Ⅱ)設(shè)點(diǎn)Px0,y0),解得D點(diǎn)坐標(biāo),即得以BD為直徑的圓圓心坐標(biāo)以及半徑,再根據(jù)直線PF方程,利用圓心到直線PF距離與半徑大小關(guān)系作判斷.

(Ⅰ)依題可知Ba,0),a=2,因?yàn)?/span>,所以c=1,

故橢圓C的方程為

(Ⅱ)以BD為直徑的圓與直線PF相切.

證明如下:設(shè)點(diǎn)Px0y0),則

①當(dāng)x0=1時(shí),點(diǎn)P的坐標(biāo)為(1,±),直線PF的方程為x=1

D的坐標(biāo)為(2,±2).

此時(shí)以BD為直徑的圓與直線PF相切.

②當(dāng)≠1時(shí)直線AP的方程為,

點(diǎn)D的坐標(biāo)為,BD中點(diǎn)E的坐標(biāo)為,故

直線PF的斜率為

故直線PF的方程為,即,

所以點(diǎn)E到直線PF的距離,故以BD為直徑的圓與直線PF相切.

綜上得,當(dāng)點(diǎn)P運(yùn)動時(shí),以BD為直徑的圓與直線PF相切.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知.

(1)求的單調(diào)區(qū)間;

(2)若(其中為自然對數(shù)的底數(shù)),且恒成立,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在一次抽獎活動中,有,,,6人獲得抽獎機(jī)會,抽獎規(guī)則如下:若獲一等獎后不再參加抽獎,獲得二等獎的仍參加三等獎抽獎.現(xiàn)在主辦方先從6人中隨機(jī)抽取2人均獲一等獎,再從余下的4人中隨機(jī)抽取1人獲二等獎,最后還從這4人中隨機(jī)抽取1人獲三等獎.

1)求能獲一等獎的概率;

2)若,已獲一等獎,求能獲獎的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),在區(qū)間上有最大值,最小值,設(shè)函數(shù).

1)求的值;

2)不等式上恒成立,求實(shí)數(shù)的取值范圍;

3)方程有三個(gè)不同的實(shí)數(shù)解,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左右焦點(diǎn)分別為,,,為橢圓上的兩動點(diǎn),且以,,四個(gè)點(diǎn)為頂點(diǎn)的凸四邊形的面積的最大值為

1)求橢圓的離心率;

2)若橢圓經(jīng)過點(diǎn),且直線的斜率是直線,的斜率的等比中項(xiàng),求面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】過點(diǎn)作互相垂直的直線,,正半軸于點(diǎn),正半軸于點(diǎn),則線段中點(diǎn)軌跡方程為_______________________;過原點(diǎn)、四點(diǎn)的圓半徑的最小值為______________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形中,,,,四邊形為矩形,平面平面,,點(diǎn)在線段上運(yùn)動,且.

1)當(dāng)時(shí),求異面直線所成角的大小;

2)設(shè)平面與平面所成二面角的大小為),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,用四種不同的顏色給圖中的A,B,C,DE,FG七個(gè)點(diǎn)涂色,要求每個(gè)點(diǎn)涂一種顏色,且圖中每條線段的兩個(gè)端點(diǎn)涂不同顏色,則不同的涂色方法有(

A.192B.336C.600D.以上答案均不對

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)及圓.

1)若直線過點(diǎn)且被圓截得的線段長為的方程;

(2)求過點(diǎn)的圓的弦的中點(diǎn)的軌跡方程.

查看答案和解析>>

同步練習(xí)冊答案