【題目】隨機(jī)抽取某中學(xué)甲、乙兩班各10名同學(xué),測(cè)量他們的身高(單位:cm),獲得身高數(shù)據(jù)的莖葉圖如圖7.
(1)根據(jù)莖葉圖判斷哪個(gè)班的平均身高較高;
(2)計(jì)算甲班的樣本方差;
(3)現(xiàn)從乙班這10名同學(xué)中隨機(jī)抽取兩名身高不低于173cm的同學(xué),求身高為176cm的同學(xué)被抽中的概率。
【答案】(1)乙班的平均身高較高;(2)57.2;(3).
【解析】試題分析:(1)由莖葉圖,獲得所有身高數(shù)據(jù),計(jì)算平均值可得;(2)由方差公式計(jì)算方差;(3)由莖葉圖知乙班這名同學(xué)中身高不低于的同學(xué)有人,可以把5人編號(hào)后,隨便抽取2名同學(xué)這個(gè)事件含有的基本事件可以用列舉法列舉出來(lái)(共10個(gè)),其中含有身高176cm基本事件有4個(gè),由概率公式計(jì)算可得.
試題解析:(1)由莖葉圖知:設(shè)樣本中甲班位同學(xué)身高為,乙班位同學(xué)身高為,則
.2分
.4分
∵,據(jù)此可以判斷乙班同學(xué)的平均身高較高.
設(shè)甲班的樣本方差為,由(1)知.則
, 8分
由莖葉圖可知:乙班這名同學(xué)中身高不低于的同學(xué)有人,身高分別為、、、、.這名同學(xué)分別用字母、、、、表示.則記“隨機(jī)抽取兩名身高不低于的同學(xué)”為事件,則包含的基本事件有:、、、、、、、、、共個(gè)基本事件. 10分
記“身高為的同學(xué)被抽中”為事件,
則包含的基本事件為:、、、共個(gè)基本事件.
由古典概型的概率計(jì)算公式可得:. 12分
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知為常數(shù),函數(shù).
(1)當(dāng)時(shí),求函數(shù)的最小值;
(2)若有兩個(gè)極值點(diǎn),():
①求實(shí)數(shù)的取值范圍;
②求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某高科技企業(yè)生產(chǎn)產(chǎn)品和產(chǎn)品需要甲、乙兩種新型材料,生產(chǎn)一件產(chǎn)品需要甲材料1.5,乙材料1,用5個(gè)工時(shí),生產(chǎn)一件產(chǎn)品需要甲材料0.5,乙材料0.3,用3個(gè)工時(shí),生產(chǎn)一件產(chǎn)品的利潤(rùn)為2100元,生產(chǎn)一件產(chǎn)品的利潤(rùn)為900元.該企業(yè)現(xiàn)有甲材料150,乙材料90,則在不超過600個(gè)工時(shí)的條件下,生產(chǎn)產(chǎn)品的利潤(rùn)之和的最大值為____________元.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在如圖所示的圓臺(tái)中,是下底面圓的直徑,是上底面圓的直徑,是圓臺(tái)的一條母線.
(1)已知,分別為,的中點(diǎn),求證:平面;
(2)已知,,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:以點(diǎn)()為圓心的圓與軸交
于點(diǎn)O, A,與y軸交于點(diǎn)O, B,其中O為原點(diǎn).
(1)求證:△OAB的面積為定值;
(2)設(shè)直線與圓C交于點(diǎn)M, N,若OM = ON,求圓C的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】記表示中的最大值,如.已知函數(shù),.
(1)設(shè),求函數(shù)在上零點(diǎn)的個(gè)數(shù);
(2)試探究是否存在實(shí)數(shù),使得對(duì)恒成立?若存在,求的取值范圍;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)證明:當(dāng)時(shí),關(guān)于的不等式恒成立;
(3)若正實(shí)數(shù)滿足,證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,已知圓C1:(x+3)2+(y-1)2=4和圓C2:(x-4)2+(y-5)2=4.若直線l過點(diǎn)A(4,0),且被圓C1截得的弦長(zhǎng)為2,求直線l的方程;
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com