(2013•泉州模擬)如圖,等腰梯形ABCD中,AB∥CD且AB=2,AD=1,DC=2x(x∈(0,1)).以A,B為焦點(diǎn),且過(guò)點(diǎn)D的雙曲線的離心率為e1;以C,D為焦點(diǎn),且過(guò)點(diǎn)A的橢圓的離心率為e2,則e1+e2的取值范圍為 ( 。
分析:根據(jù)余弦定理表示出BD,進(jìn)而根據(jù)雙曲線的性質(zhì)可得到a的值,再由AB=2c,e=
c
a
可表示出e1,同樣表示出橢圓中的c'和a'表示出e2的關(guān)系式,然后利用換元法求出e1+e2的取值范圍即可.
解答:解:BD=
AD2+AB2-2AD×ABcos∠DAB
=
1+4x
,
∴a1=
1+4x
-1
2
,c1=1,a2=
1+4x
+1
2
,c2=x,
∴e1=
2
1+4x
-1
,e2=
2x
1+4x
+1
,e1e2=1
但e1+e2≥2
e1e2
中不能取“=”,
∴e1+e2=
2
1+4x
-1
+
2x
1+4x
+1
=
2
1+4x
-1
+
1+4x
-1
2
,
令t=
1+4x
-1∈(0,
5
-1),則e1+e2=
1
2
(t+
4
t
),t∈(0,
5
-1),
∴e1+e2∈(
5
,+∞)
∴e1+e2的取值范圍為(
5
,+∞).
故選B.
點(diǎn)評(píng):本小題主要考查橢圓的簡(jiǎn)單性質(zhì)、雙曲線的簡(jiǎn)單性質(zhì)等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,考查數(shù)形結(jié)合思想、化歸與轉(zhuǎn)化思想.屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•泉州模擬)已知點(diǎn)P(x,y)在直線x-y-1=0上運(yùn)動(dòng),則(x-2)2+(y-2)2的最小值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•泉州模擬)已知△ABC外接圓O的半徑為1,且
OA
OB
=-
1
2

(Ⅰ)求AB邊的長(zhǎng)及角C的大;
(Ⅱ)從圓O內(nèi)隨機(jī)取一個(gè)點(diǎn)M,若點(diǎn)M取自△ABC內(nèi)的概率恰為
3
3
,試判斷△ABC的形狀.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•泉州模擬)設(shè)全集U=R,A={x|x(x+3)<0},B={x|x<-1},則圖中陰影部分表示的集合為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•泉州模擬)設(shè)a,b∈R,那么“
a
b
>1
”是“a>b>0”的( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案