【題目】已知f(x)是定義在[﹣2,2]上的奇函數(shù),當(dāng)x∈(0,2]時(shí),f(x)=2x﹣1,函數(shù)g(x)=x2﹣2x+m.如果對于x1∈[﹣2,2],x2∈[﹣2,2],使得g(x2)=f(x1),則實(shí)數(shù)m的取值范圍是 .
【答案】[﹣5,﹣2]
【解析】解:∵f(x)是定義在[﹣2,2]上的奇函數(shù),∴f(0)=0,
當(dāng)x∈(0,2]時(shí),f(x)=2x﹣1∈(0,3],
則當(dāng)x∈[﹣2,2]時(shí),f(x)∈[﹣3,3],
若對于x1∈[﹣2,2],x2∈[﹣2,2],使得g(x2)=f(x1),
則等價(jià)為g(x)max≥3且g(x)min≤﹣3,
∵g(x)=x2﹣2x+m=(x﹣1)2+m﹣1,x∈[﹣2,2],
∴g(x)max=g(﹣2)=8+m,g(x)min=g(1)=m﹣1,
則滿足8+m≥3且m﹣1≤﹣3,
解得m≥﹣5且m≤﹣2,
故﹣5≤m≤﹣2,
所以答案是:[﹣5,﹣2]
【考點(diǎn)精析】通過靈活運(yùn)用特稱命題,掌握特稱命題:,,它的否定:,;特稱命題的否定是全稱命題即可以解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)高一、高二年級(jí)各有8個(gè)班,學(xué)校調(diào)查了春學(xué)期各班的文學(xué)名著閱讀量(單位:本),并根據(jù)調(diào)查結(jié)果,得到如下所示的莖葉圖:
為鼓勵(lì)學(xué)生閱讀,在高一、高二兩個(gè)兩個(gè)年級(jí)中,學(xué)校將閱讀量高于本年級(jí)閱讀量平均數(shù)的班級(jí)命名為該年級(jí)的“書香班級(jí)”.
(1)當(dāng)a=4時(shí),記高一年級(jí)“書香班級(jí)”數(shù)為m,高二年級(jí)的“書香班級(jí)”數(shù)為n,比較m,n的大小關(guān)系;
(2)在高一年級(jí)8個(gè)班級(jí)中,任意選取兩個(gè),求這兩個(gè)班級(jí)均是“書香班級(jí)”的概率;
(3)若高二年級(jí)的“書香班級(jí)”數(shù)多于高一年級(jí)的“書香班級(jí)”數(shù),求a的值(只需寫出結(jié)論)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知實(shí)數(shù)x,y滿足不等式組 ,若目標(biāo)函數(shù)z=kx+y僅在點(diǎn)(1,1)處取得最小值,則實(shí)數(shù)k的取值范圍是 ( )
A.(﹣1,+∞)
B.(﹣∞,﹣1)
C.(1,+∞)
D.(﹣∞,1)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=log2(|x﹣1|+|x+2|﹣a).
(Ⅰ)當(dāng)a=7時(shí),求函數(shù)f(x)的定義域;
(Ⅱ)若關(guān)于x的不等式f(x)≥3的解集是R,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=log2(3+x)﹣log2(3﹣x),
(1)求函數(shù)f(x)的定義域,并判斷函數(shù)f(x)的奇偶性;
(2)已知f(sinα)=1,求α的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) ,且f(1)=1,f(﹣2)=4.
(1)求a、b的值;
(2)已知定點(diǎn)A(1,0),設(shè)點(diǎn)P(x,y)是函數(shù)y=f(x)(x<﹣1)圖象上的任意一點(diǎn),求|AP|的最小值,并求此時(shí)點(diǎn)P的坐標(biāo);
(3)當(dāng)x∈[1,2]時(shí),不等式 恒成立,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)D是橢圓C: =1(a>b>0)上一點(diǎn),F(xiàn)1 , F2分別為C的左、右焦點(diǎn),|F1F2|=2 ,∠F1DF2=60°,△F1DF2的面積為
(1)求橢圓C的方程;
(2)過點(diǎn)Q(1,0)的直線l與橢圓C相交于A,B兩點(diǎn),點(diǎn)P(4,3),記直線PA,PB的斜率分別為k1 , k2 , 當(dāng)k1k2最大時(shí),求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知在等差數(shù)列{an}中,Sn為其前n項(xiàng)和,a2=2,S5=15;等比數(shù)列{bn}的前n項(xiàng)和 .
( I)求數(shù)列{an},{bn}的通項(xiàng)公式;
( II)設(shè)cn=anbn , 求數(shù)列{cn}的前n項(xiàng)和Cn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)△ABC的內(nèi)角A,B,C所對邊分別為a,b,c.向量 =(a, b), =(sinB,﹣cosA),且 ⊥ .
(1)求A的大。
(2)若| |= ,求cosC的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com