已知函數(shù)f(x)=lnx-ax.
(Ⅰ)求函數(shù)f(x)的極值,
(Ⅱ)已知過點P(1,f(1)),Q(e,f(e))的直線為l,則必存在x0∈(1,e),使曲線y=f(x)在點(x0,f(x0))處的切線與直線l平行,求x0的值,
(Ⅲ)已知函數(shù)g(x)圖象在[0,1]上連續(xù)不斷,且函數(shù)g(x)的導函數(shù)g'(x)在區(qū)間(0,1)內(nèi)單調(diào)遞減,若g(1)=0,試用上述結(jié)論證明:對于任意x∈(0,1),恒有g(shù)(x)>g(0)(1-x)成立.
分析:(I)由題意先對函數(shù)f(x)=lnx-ax求其導函數(shù),并利用導函數(shù)分析單調(diào)性并求其極值;
(II)利用已知直線上兩點寫出其斜率的式子,再利用導數(shù)的幾何含義寫出直線的斜率,進而建立方程求解即可;
(III)利用(II)的結(jié)論實質(zhì),依照題意即可求證結(jié)論.
解答:解:(Ⅰ)f'(x)=
-a=(x>0)
①若a≤0,f'(x)>0,f(x)在(0,+∞)上單調(diào)遞增,此時f(x)不存在極值.
②若a>0令f'(x)=0得x=
,
當x∈
(0,)時,f
′(x)>0,此時函數(shù)f(x)在此區(qū)間上單調(diào)遞增;
當x∈
(,+∞)時,f
′(x)<0,此時函數(shù)f(x)在此區(qū)間上單調(diào)遞減;
∴f(x)
極大值=
f()=-lna-1綜上:當a≤0時,f(x)沒有極大值,當a>0時,f(x)
極大值=-lna-1.
(Ⅱ)直線l的斜率k=
=-a+,
∵x
0∈(1,e),
依題意有f'(x
0)=-a+
即
-a=-a+得x
0=e-1∈(1,e),
故x
0=e-1
(Ⅲ)①f'(x
0)=
或
()由以上結(jié)論得:對區(qū)間[0,x]存在x
1∈[0,x]使g'(x
1)=
同樣對區(qū)間[x,1]存在x
2∈[x,1]使g'(x
2)=
=依題意得:g'(x
1)>g'(x
2)即
>
化簡得g(x)>g(0)(1-x)成立.
點評:(I)此問重點考查了利用函數(shù)的導函數(shù)求解極值,并在判斷函數(shù)單調(diào)性時考查了解不等式時的分類討論的思想;
(II)此問重點考查了直線的斜率公式及利用導數(shù)的幾何意義,進而建立斜率的方程;
(III))此問重點考查了對于(II)的結(jié)論的理解與應用.