【題目】數(shù)列是正整數(shù)的任一排列,且同時滿足以下兩個條件:
①;②當(dāng)時, ().
記這樣的數(shù)列個數(shù)為.
(I)寫出的值;
(II)證明不能被4整除.
【答案】(1)詳見解析;(2)詳見解析.
【解析】試題分析:(1)依題意,易得: ;(2)把滿足條件①②的數(shù)列稱為項的首項最小數(shù)列.對于個數(shù)的首項最小數(shù)列,由于,故或3.分成三類情況,利用已知條件逐一進(jìn)行驗證即可.
試題解析:
(Ⅰ)解: .
(Ⅱ)證明:把滿足條件①②的數(shù)列稱為項的首項最小數(shù)列.
對于個數(shù)的首項最小數(shù)列,由于,故或3.
(1)若,則構(gòu)成項的首項最小數(shù)列,其個數(shù)為;
(2)若,則必有,故構(gòu)成項的首項最小數(shù)列,其個數(shù)為;
(3)若則或. 設(shè)是這數(shù)列中第一個出現(xiàn)的偶數(shù),則前項應(yīng)該是, 是或,即與是相鄰整數(shù).
由條件②,這數(shù)列在后的各項要么都小于它,要么都大于它,因為2在之后,故后的各項都小于它.
這種情況的數(shù)列只有一個,即先排遞增的奇數(shù),后排遞減的偶數(shù).
綜上,有遞推關(guān)系: , .
由此遞推關(guān)系和(I)可得, 各數(shù)被4除的余數(shù)依次為:
1,1,2,0,2,1,2,1,3,2,0,0,3,0,1,1,2,0,…
它們構(gòu)成14為周期的數(shù)列,又,
所以被4除的余數(shù)與被4除的余數(shù)相同,都是1,
故不能被4整除.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知正項數(shù)列{an},a1=1,an=an+12+2an+1(Ⅰ)求證:數(shù)列{log2(an+1)}為等比數(shù)列:
(Ⅱ)設(shè)bn=n1og2(an+1),數(shù)列{bn}的前n項和為Sn , 求證:1≤Sn<4.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2017年3月14日,“ofo共享單車”終于來到蕪湖,ofo共享單車又被親切稱作“小黃車”是全球第一個無樁共享單車平臺,開創(chuàng)了首個“單車共享”模式.相關(guān)部門準(zhǔn)備對該項目進(jìn)行考核,考核的硬性指標(biāo)是:市民對該項目的滿意指數(shù)不低于0.8,否則該項目需進(jìn)行整改,該部門為了了解市民對該項目的滿意程度,隨機(jī)訪問了使用共享單車的100名市民,并根據(jù)這100名市民對該項目滿意程度的評分,繪制了如下頻率分布直方圖: (I)為了了解部分市民對“共享單車”評分較低的原因,該部門從評分低于60分的市民中隨機(jī)抽取2人進(jìn)行座談,求這2人評分恰好都在[50,60)的概率;
(II)根據(jù)你所學(xué)的統(tǒng)計知識,判斷該項目能否通過考核,并說明理由.
(注:滿意指數(shù)= )
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) .
(Ⅰ)求曲線在點(diǎn)處的切線方程;
(Ⅱ)求證: ;
(Ⅲ)判斷曲線是否位于軸下方,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x)=x3﹣ax2﹣a2x+1,(a∈R).
(Ⅰ)求f(x)的單調(diào)區(qū)間;
(Ⅱ)若f(x)的圖象不存在與l:y=﹣x平行或重合的切線,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】袋子里有編號為的五個球,某位教師從袋中任取兩個不同的球. 教師把所取兩球編號的和只告訴甲,其乘積只告訴乙,讓甲、乙分別推斷這兩個球的編號.
甲說:“我無法確定.”
乙說:“我也無法確定.”
甲聽完乙的回答以后,甲又說:“我可以確定了.”
根據(jù)以上信息, 你可以推斷出抽取的兩球中
A. 一定有3號球 B. 一定沒有3號球 C. 可能有5號球 D. 可能有6號球
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知全集U=R,集合A={x|﹣1<x<1},B={x|2≤4x≤8},C={x|a﹣4<x≤2a﹣7}.
(1)求(UA)∩B;
(2)若A∩C=C,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}是各項均不為0的等差數(shù)列.Sn為其前n項和,且滿足an2=S2n﹣1(n∈N*),bn=an2+λan , 若{bn}為遞增數(shù)列,則實數(shù)λ的范圍為 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com