【題目】如圖,已知圓錐和圓柱的組合體(它們的底面重合),圓錐的底面圓半徑為, 為圓錐的母線, 為圓柱的母線, 為下底面圓上的兩點,且, .

(1)求證:平面平面;

(2)求二面角的正弦值.

【答案】(1)見解析(2)

【解析】試題分析:(1)先根據(jù)平幾知識計算得,再根據(jù)圓柱性質(zhì)得平面,即有,最后根據(jù)線面垂直判定定理得平面,即得平面平面;(2)求二面角,一般利用空間向量進行求解,先根據(jù)條件建立空間直角坐標(biāo)系,設(shè)立各點坐標(biāo),利用方程組解出各面法向量,利用向量數(shù)量積求法向量夾角,最后根據(jù)二面角與向量夾角之間關(guān)系求解

試題解析:解:(1)依題易知,圓錐的高為,又圓柱的高為,

所以,

因為,所以,

連接,易知三點共線, ,

所以,

所以

解得,又因為,圓的直徑為10,圓心內(nèi),

所以易知,所以

因為平面,所以,因為,所以平面

又因為平面,所以平面平面

(2)如圖,以為原點, 、所在的直線為軸,建立空間直角坐標(biāo)系.

所以,

設(shè)平面的法向理為,

所以,令,則

可取平面的一個法向量為,

所以

所以二面角的正弦值為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某花店每天以每枝5元的價格從花市購進若干枝玫瑰花,然后以每枝10元的價格出售.如果當(dāng)天賣不完,剩下的玫瑰花作垃圾處理.

(1)若花店一天購進17支玫瑰花,求當(dāng)天的利潤(單位:元),關(guān)于當(dāng)天需求量(單位:枝, 的解析式;

(2)花店記錄了100天玫瑰花的日需求量(單位:枝),整理得如表:

日需求量

14

15

16

17

18

19

20

頻數(shù)

10

20

16

16

15

13

10

①假設(shè)花店在這100天內(nèi)每天購進16枝玫瑰花或每天購進17枝玫瑰花,分別計算這100天花店的日利潤(單位:元)的平均數(shù),并以此作為決策依據(jù),花店在這100天內(nèi)每天購進16枝還是17枝玫瑰花?

②若花店一天購進17枝玫瑰花,以100天記錄的各需求量的頻率作為概率,求當(dāng)天的利潤不少于75元的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)f(x)是定義在R上的減函數(shù),且f(x)>0恒成立,若對任意的x,y∈R,都有f(x﹣y)= ,
(1)求f(0)的值,并證明對任意的x,y∈R,f(x+y)=f(x)f(y);
(2)若f(﹣1)=3,解不等式 ≤9.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中為自然對數(shù)的底數(shù).(參考數(shù)據(jù):

(1)討論函數(shù)的單調(diào)性;

(2)若時,函數(shù)有三個零點,分別記為,證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)定義在R上的偶函數(shù)f(x)滿足f(x+2)=f(x),f′(x)是f(x)的導(dǎo)函數(shù),當(dāng)x∈[0,1]時,0≤f(x)≤1;當(dāng)x∈(0,2)且x≠1時,x(x﹣1)f′(x)<0.則方程f(x)=lg|x|根的個數(shù)為(
A.12
B.1 6
C.18
D.20

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=
(1)求函數(shù)f(x)的定義域;
(2)求f(﹣1),f(12)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列說法中,正確的是 . (填序號)
①若集合A={x|kx2+4x+4=0}中只有一個元素,則k=1;
②在同一平面直角坐標(biāo)系中,y=2x與y=2x的圖象關(guān)于y軸對稱;
③y=( x是增函數(shù);
④定義在R上的奇函數(shù)f(x)有f(x)f(﹣x)≤0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知兩個命題p:x∈R,sinx+cosx>m恒成立,q:x∈R,y=(2m2﹣m)x為增函數(shù).若p∨q為真命題,p∧q為假命題,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為提高市場銷售業(yè)績,某公司設(shè)計兩套產(chǎn)品促銷方案(方案1運作費用為元/件;方案2的的運作費用為元/件),并在某地區(qū)部分營銷網(wǎng)點進行試點(每個試點網(wǎng)點只采用一種促銷方案),運作一年后,對比該地區(qū)上一年度的銷售情況,分別統(tǒng)計相應(yīng)營銷網(wǎng)點個數(shù),制作相應(yīng)的列聯(lián)表如下表所示.

無促銷活動

采用促銷方案1

采用促銷方案2

本年度平均銷售額不高于上一年度平均銷售額

48

11

31

90

本年度平均銷售額高于上一年度平均銷售額

52

69

29

150

100

80

60

(Ⅰ)請根據(jù)列聯(lián)表提供的信息,為該公司今年選擇一套較為有利的促銷方案(不必說明理由);

(Ⅱ)已知該公司產(chǎn)品的成本為10元/件(未包括促銷活動運作費用),為制定本年度該地區(qū)的產(chǎn)品銷售價格,統(tǒng)計上一年度的組售價(單位:元/件,整數(shù))和銷量(單位:件)()如下表所示:

售價

銷量

(ⅰ)請根據(jù)下列數(shù)據(jù)計算相應(yīng)的相關(guān)指數(shù),并根據(jù)計算結(jié)果,選擇合適的回歸模型進行擬合;

(ⅱ)根據(jù)所選回歸模型,分析售價定為多少時?利潤可以達到最大.

參考公式:相關(guān)指數(shù)

查看答案和解析>>

同步練習(xí)冊答案