16.已知函數(shù)f(x)=$\left\{\begin{array}{l}{-{2}^{x},x≥0}\\{lo{g}_{4}|x|,x<0}\end{array}\right.$,則f(f(2))=1.

分析 先求出f(2)=-22=-4,從而f(f(2))=f(-4),由此能求出結(jié)果.

解答 解:∵函數(shù)f(x)=$\left\{\begin{array}{l}{-{2}^{x},x≥0}\\{lo{g}_{4}|x|,x<0}\end{array}\right.$,
∴f(2)=-22=-4,
f(f(2))=f(-4)=log4|-4|=1.
故答案為:1.

點評 本題考查函數(shù)值的求法,是基礎(chǔ)題,解題時要認真審題,注意函數(shù)性質(zhì)的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.四面體的頂點和各棱中點共10個點,則由這10點構(gòu)成的直線中,有423對異面直線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.某教師有相同的語文參考書3本,相同的數(shù)學(xué)參考書4本,從中取出4本贈送給4位學(xué)生,每位學(xué)生1本,則不同的贈送方法共有(  )
A.20種B.15種C.10種D.4種

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.如圖,網(wǎng)格紙上小正方形的邊長為1,粗實線畫出的是某多面體的三視圖,則該多面體的各面中,最長棱的長度是(  )
A.$2\sqrt{5}$B.$4\sqrt{2}$C.6D.$4\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)f(x)=ln(x+1)+$\frac{2a}{x+a}({a>0})$.
(I)討論函數(shù)f(x)在(0,+∞)上的單調(diào)性;
(II)設(shè)函數(shù)f(x)存在兩個極值點,并記作x1,x2,若f(x1)+f(x2)>4,求正數(shù)a的取值范圍;
(III)求證:當(dāng)a=1時,f(x)>$\frac{1}{{{e^{x+1}}}}+\frac{1}{x+1}$(其中e為自然對數(shù)的底數(shù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知數(shù)列{an}的前n項和為Sn,且滿足Sn=$\frac{1}{4}$n2+$\frac{2}{3}$n+3,數(shù)列{log3bn}{n∈N*}為等差數(shù)列,且b1=3,b3=27.
(Ⅰ)求數(shù)列{an}與{bn}的通項公式;
(II)令cn=(-1)n•$\frac{n}{2}$+3n,求數(shù)列{cn}的前2n項和T2n

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知橢圓C的方程為$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0),雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1的一條漸近線與x軸所成的夾角為30°,且雙曲線的焦距為4$\sqrt{2}$.
(1)求橢圓C的方程;
(2)過右焦點F的直線l,交橢圓于A、B兩點,記△AOF的面積為S1,△BOF的面積為S2,當(dāng)S1=2S2時,求$\overrightarrow{OA}$•$\overrightarrow{OB}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.一個家庭中有兩個小孩.假定生男、生女是等可能的,已知這個家庭有一個是女孩,問另一個小孩是男孩的概率是$\frac{2}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.在數(shù)列{an}中,對任意n∈N*,都有an+1-2an=0,則$\frac{{2{a_1}+{a_2}}}{{2{a_3}+{a_4}}}$等于( 。
A.2B.4C.$\frac{1}{2}$D.$\frac{1}{4}$

查看答案和解析>>

同步練習(xí)冊答案