【題目】已知函數(shù)().
(1)若不等式的解集為,求的取值范圍;
(2)當(dāng)時,解不等式;
(3)若不等式的解集為,若,求的取值范圍.
【答案】(1);(2).;(3).
【解析】試題分析:(1)對二項式系數(shù)進(jìn)行討論,可得求出解集即可;(2)分為, , 分別解出3種情形對應(yīng)的不等式即可;(3)將問題轉(zhuǎn)化為對任意的,不等式恒成立,利用分離參數(shù)的思想得恒成立,求出其最大值即可.
試題解析:(1)①當(dāng)即時, ,不合題意;
②當(dāng)即時,
,即,
∴,∴
(2)即
即
①當(dāng)即時,解集為
②當(dāng)即時,
∵,∴解集為
③當(dāng)即時,
∵,所以,所以
∴解集為
(3)不等式的解集為, ,
即對任意的,不等式恒成立,
即恒成立,
因為恒成立,所以恒成立,
設(shè)則, ,
所以,
因為,當(dāng)且僅當(dāng)時取等號,
所以,當(dāng)且僅當(dāng)時取等號,
所以當(dāng)時, ,
所以
科目:高中數(shù)學(xué) 來源: 題型:
【題目】計劃在某水庫建一座至多安裝3臺發(fā)電機(jī)的水電站,過去50年的水文資料顯示,水庫年入流量(年入流量:一年內(nèi)上游來水與庫區(qū)降水之和,單位:億立方米)都在40以上.其中,不足80的年份有10年,不低于80且不超過120的年份有35年,超過120的年份有5年.將年入流量在以上三段的頻率作為相應(yīng)段的概率,并假設(shè)各年的年入流量相互獨立.
(Ⅰ)求在未來4年中,至多1年的年入流量超過120的概率;
(Ⅱ)水電站希望安裝的發(fā)電機(jī)盡可能運行,但每年發(fā)電機(jī)最多可運行臺數(shù)受年入流量限制,并有如下關(guān)系;
年入流量 | |||
發(fā)電機(jī)最多可運行臺數(shù) | 1 | 2 | 3 |
若某臺發(fā)電機(jī)運行,則該臺發(fā)電機(jī)年利潤為5000萬元;若某臺發(fā)電機(jī)未運行,則該臺發(fā)電機(jī)年虧損800萬元,欲使水電站年總利潤的均值達(dá)到最大,應(yīng)安裝發(fā)電機(jī)多少臺?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了弘揚民族文化,某校舉行了“我愛國學(xué),傳誦經(jīng)典”考試,并從中隨機(jī)抽取了100名考生的成績(得分均為整數(shù),滿分100分)進(jìn)行統(tǒng)計制表,其中成績不低于80分的考生被評為優(yōu)秀生,請根據(jù)頻率分布表中所提供的數(shù)據(jù),用頻率估計概率,回答下列問題.
分組 | 頻數(shù) | 頻率 |
5 | ||
35 | ||
25 | ||
15 | ||
合計 | 100 |
(Ⅰ)求的值及隨機(jī)抽取一考生恰為優(yōu)秀生的概率;
(Ⅱ)按成績采用分層抽樣抽取20人參加學(xué)校的“我愛國學(xué)”宣傳活動,求其中優(yōu)秀生的人數(shù);
(Ⅲ)在第(Ⅱ)問抽取的優(yōu)秀生中指派2名學(xué)生擔(dān)任負(fù)責(zé)人,求至少一人的成績在的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知a,b,c是兩兩不等的實數(shù),則p=a2+b2+c2與q=ab+bc+ca的大小關(guān)系是________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為方便市民休閑觀光,市政府計劃在半徑為200,圓心角為的扇形廣場內(nèi)(如圖所示),沿△邊界修建觀光道路,其中、分別在線段、上,且、兩點間距離為定長.
(1)當(dāng)時,求觀光道段的長度;
(2)為提高觀光效果,應(yīng)盡量增加觀光道路總長度,試確定圖中、兩點的位置,使觀光道路總長度達(dá)到最長?并求出總長度的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校為加強學(xué)生的交通安全教育,對學(xué)校旁邊,兩個路口進(jìn)行了8天的檢測調(diào)查,得到每天各路口不按交通規(guī)則過馬路的學(xué)生人數(shù)(如莖葉圖所示),且路口數(shù)據(jù)的平均數(shù)比路口數(shù)據(jù)的平均數(shù)小2.
(1)求出路口8個數(shù)據(jù)中的中位數(shù)和莖葉圖中的值;
(2)在路口的數(shù)據(jù)中任取大于35的2個數(shù)據(jù),求所抽取的兩個數(shù)據(jù)中至少有一個不小于40的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=2sinωxcosωx+2sin2ωx﹣(ω>0)的最小正周期為π.
(1)求函數(shù)f(x)的單調(diào)增區(qū)間;
(2)將函數(shù)f(x)的圖象向左平移個單位,再向上平移1個單位,得到函數(shù)y=g(x)的圖象,若y=g(x)在[0,b](b>0)上至少含有10個零點,求b的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,P為平行四邊形ABCD所在平面外一點,MN分別為ABPC的中點,平面PAD∩平面PBC=l.
(1)判斷BC與l的位置關(guān)系,并證明你的結(jié)論;
(2)判斷MN與平面PAD的位置關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直三棱柱中,,,是棱上的一點,分別為的中點.
(1)求證:∥平面;
(2)當(dāng)為的中點時,求三棱錐的體積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com