設(shè)兩個非零向量
b
=(
x
x-2
1
x-2
)
c
=(x-a+1,a-4)
,解關(guān)于x的不等式
b
c
>2
(其中a>1)
b
c
=
x(x-a+1)
x-2
+
a-4
x-2
,(2分)
b
c
>2
,得
x2-(a+1)x+a
x-2
>0
?
(x-a)(x-1)
x-2
>0
(4分)
則(x-a)(x-1)(x-2)>0(5分)
由于a>1,于是有:
(1)當(dāng)1<a<2時,不等式的解集為{x|1<x<a或x>2}(8分)
(2)當(dāng)a>2時,不等式的解集為{x|1<x<2或x>a}(11分)
(3)當(dāng)a=2時,不等式的解集為{x|x>1且x≠2}(13分)
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)兩個非零向量e1與e2不共線,(1)如果
AB
=e1+e2,
BC
=e1+8e2
CD
=3(e1-e2).(2)試確定實數(shù)k的值,使ke1+e2和e1+ke2共線.求證:A、B、D三點共線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)兩個非零向量
e1
,
e2
不共線,若k
e1
+
e2
e1
+k
e2
也不共線,則實數(shù)k的取值范圍為( 。
A、(-∞,+∞)
B、(-∞,-1)∪(-1,+∞)
C、(-∞,1)∪(1,+∞)
D、(-∞,-1)∪(-1,1)∪(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)兩個非零向量
e1
e2
不共線.
(1)如果
AB
=
e1
+
e2
,
BC
=2
e1
+8
e2
CD
=3
e1
-3
e2
,求證:A、B、D三點共線;
(2)若|
e1
|
=2,|
e2
|
=3,
e1
e2
的夾角為60°,是否存在實數(shù)m,使得m
e1
+
e2
e1
-
e2
垂直?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2006•重慶一模)設(shè)兩個非零向量
b
=(
x
x-2
,
1
x-2
)
,
c
=(x-a+1,a-4)
,解關(guān)于x的不等式
b
c
>2
(其中a>1)

查看答案和解析>>

同步練習(xí)冊答案