已知函數(shù)
(1)當(dāng)時,求函數(shù)的極值;(2)當(dāng)時,討論的單調(diào)性。
(1)的極小值為,無極大值(2)當(dāng)時,的單調(diào)遞增區(qū)間是,單調(diào)遞減區(qū)間是;當(dāng)時,單調(diào)遞減區(qū)間是;時,的單調(diào)遞增區(qū)間是,單調(diào)遞減區(qū)間是

試題分析:(1)當(dāng)時,,求導(dǎo),令,同時討論的單調(diào)性即可.
(2)當(dāng)時,,故二次不等式的二次項系數(shù)為負,故不等式的解集取決于兩個根
的大小,分類討論即可得到的單調(diào)區(qū)間.
(1)函數(shù)的定義域為
當(dāng)時,       
,得
當(dāng)時,;當(dāng)時,
上單調(diào)遞減,在上單調(diào)遞增
的極小值為,無極大值.
(2)………6分
①當(dāng)時,,故函數(shù)在上是減函數(shù);
②當(dāng)時,
,得;令,得
③當(dāng)時,
,得;令,得
綜上所述,
當(dāng)時,的單調(diào)遞增區(qū)間是,單調(diào)遞減區(qū)間是
當(dāng)時,單調(diào)遞減區(qū)間是;
時,的單調(diào)遞增區(qū)間是,單調(diào)遞減區(qū)間是
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)函數(shù),其中.
(1)求函數(shù)的定義域(用區(qū)間表示);
(2)討論函數(shù)上的單調(diào)性;
(3)若,求上滿足條件的集合(用區(qū)間表示).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)函數(shù)處取得極值1.
(1)求實數(shù)b,c的值;
(2)求在區(qū)間[-2,2]上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)函數(shù).若實數(shù)a, b滿足, 則 (   )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)f(x)=x3-ax2-3x.
(1)若f(x)在[1,+∞)上是增函數(shù),求實數(shù)a的取值范圍;
(2)若x=3是f(x)的極值點,求f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)
(1)若函數(shù)時取得極值,求實數(shù)的值;
(2)若對任意恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù).
(1)當(dāng)時,求曲線在點處的切線方程;
(2)求函數(shù)的單調(diào)區(qū)間;
(3)若對任意的都有恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)在區(qū)間上為單調(diào)增函數(shù),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

f(x)=x3﹣3x2+2在區(qū)間[﹣1,1]上的最大值是(  )
A.﹣2B.0C.2D.4

查看答案和解析>>

同步練習(xí)冊答案