給出如下四個命題:
①若a≥0,b≥0,則
2(a2+b2)
≥a+b

②若ab>0,則|a+b|<|a|+|b|;
③若a>0,b>0,a+b>4,ab>4,則a>2,b>2;
④若a,b,c,∈R,且ab+bc+ca=1,則(a+b+c)2≥3;
其中正確的命題是( 。
分析:①若a≥0,b≥0,利用基本不等式可得a2+b2≥2ab,從而2(a2+b2)≥(a+b)2;
②若ab>0,則|a+b|=|a|+|b|;
③取反例:a=5,b=1.5;
④利用基本不等式可得(a+b+c)2=a2+b2+c2+2ab+2bc+2ac≥3(ab+bc+ca)=3.
解答:解:①若a≥0,b≥0,則a2+b2≥2ab,∴2(a2+b2)≥(a+b)2,∴
2(a2+b2)
≥a+b
,故正確;
②若ab>0,則|a+b|=|a|+|b|,故不正確;
③若a>0,b>0,a+b>4,ab>4,取a=5,b=1.5,結(jié)論不成立,故不正確;
④若a,b,c,∈R,且ab+bc+ca=1,則(a+b+c)2=a2+b2+c2+2ab+2bc+2ac≥3(ab+bc+ca)=3,故正確
綜上知,正確的命題是①,④
故選B.
點(diǎn)評:本題考查命題真假判斷,考查不等式知識,解題的關(guān)鍵是正確運(yùn)用基本不等式,同時注意反例的列舉.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

給出如下四個命題
①對于任意的實(shí)數(shù)α和β,等式cos(α+β)=cosαcosβ-sinαsinβ恒成立;
②存在實(shí)數(shù)α,β,使等式cos(α+β)=cosαcosβ+sinαsinβ能成立;
③公式tan(α+β)=
tanα+tanβ
1-tanα•tanβ
成立的條件是α≠kπ+
π
2
(k∈Z)且β≠kπ+
π
2
(k∈Z);
④不存在無窮多個α和β,使sin(α-β)=sinαcosβ-cosαsinβ;
其中假命題是( 。
A、①②B、②③C、③④D、②③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=x|x|+bx+c(b,c∈R),給出如下四個命題:①若c=0,則f(x)為奇函數(shù);②若b=0,則函數(shù)f(x)在R上是增函數(shù);③函數(shù)y=f(x)的圖象關(guān)于點(diǎn)(0,c)成中心對稱圖形;④關(guān)于x的方程f(x)=0最多有兩個實(shí)根.其中正確的命題
①②③
①②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

現(xiàn)給出如下四個命題:
①過點(diǎn)A(4,1)且在兩坐標(biāo)軸上的截距相等的直線共有兩條;
②若平面α內(nèi)的兩條直線都與平面β平行,則α∥β;
③已知α∩β=l,若α內(nèi)的直線m垂直于l,則α⊥β;
④已知α⊥β,α∩β=l,若α內(nèi)的直線m與l不垂直,則m與β也不垂直.
請你寫出其中所有真命題的序號:
①④
①④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•閘北區(qū)一模)在實(shí)數(shù)集R中,我們定義的大小關(guān)系“>”為全體實(shí)數(shù)排了一個“序”.類似的,我們在復(fù)數(shù)集C上也可以定義一個稱為“序”的關(guān)系,記為“>”.定義如下:對于任意兩個復(fù)數(shù)z1=a1+b1i,z2=a2+b2i(a1,a2,b1,b2∈R),z1>z2當(dāng)且僅當(dāng)“a1>a2”或“a1=a2且b1>b2”.
按上述定義的關(guān)系“>”,給出如下四個命題:
①1>i>0; 
②若z1>z2,z2>z3,則z1>z3
③若z1>z2,則,對于任意z∈C,z1+z>z2+z;
④對于復(fù)數(shù)z>0,若z1>z2,則zz1>zz2
其中真命題的序號為( 。

查看答案和解析>>

同步練習(xí)冊答案