【題目】已知函數(shù).
(1)若.證明函數(shù)有且僅有兩個(gè)零點(diǎn);
(2)若函數(shù)存在兩個(gè)零點(diǎn),證明:.
【答案】(1)證明見(jiàn)解析;(2)證明見(jiàn)解析.
【解析】
(1)當(dāng)時(shí),函數(shù),定義域?yàn)?/span>,利用導(dǎo)數(shù)分析其單調(diào)性,使在單調(diào)遞減,在單調(diào)遞增,進(jìn)而分別計(jì)算并判斷,,與零的大小比較,最后由零點(diǎn)的存在性定理即可確定零點(diǎn)的個(gè)數(shù);
(2)由是函數(shù)的兩個(gè)零點(diǎn),知,進(jìn)而表示,再由分析法逐步反推不等式,最后令,構(gòu)造函數(shù),由(1)的單調(diào)性分析,表示最小值并由雙勾函數(shù)證得,即可得證.
(1)由題可知,定義域
當(dāng)時(shí),函數(shù),則,(為的導(dǎo)函數(shù))
單調(diào)遞增
,
使.
時(shí),單調(diào)遞減;時(shí),單調(diào)遞增
所以
由雙勾函數(shù)性質(zhì)可知,在遞減,,,且,
在上有且只有一個(gè)零點(diǎn)
又,且
所以在上有且只有一個(gè)零點(diǎn)
綜上,函數(shù)有且僅有兩個(gè)零點(diǎn)
(2)由是函數(shù)的兩個(gè)零點(diǎn),知
要證
需證
令
需證
令
與(1)同理得
所以
故
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】多面體歐拉定理是指對(duì)于簡(jiǎn)單多面體,其各維對(duì)象數(shù)總滿足一定的數(shù)量關(guān)系,在三維空間中,多面體歐拉定理可表示為:頂點(diǎn)數(shù)+表面數(shù)-棱長(zhǎng)數(shù)=2.在數(shù)學(xué)上,富勒烯的結(jié)構(gòu)都是以正五邊形和正六邊形面組成的凸多面體,例如富勒烯(結(jié)構(gòu)圖如圖)是單純用碳原子組成的穩(wěn)定分子,具有60個(gè)頂點(diǎn)和32個(gè)面,其中12個(gè)為正五邊形,20個(gè)為正六邊形.除外具有封閉籠狀結(jié)構(gòu)的富勒烯還可能有,,,,,,,等,則結(jié)構(gòu)含有正六邊形的個(gè)數(shù)為( )
A.12B.24C.30D.32
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某城市對(duì)一項(xiàng)惠民市政工程滿意程度(分值:分)進(jìn)行網(wǎng)上調(diào)查,有2000位市民參加了投票,經(jīng)統(tǒng)計(jì),得到如下頻率分布直方圖(部分圖):
現(xiàn)用分層抽樣的方法從所有參與網(wǎng)上投票的市民中隨機(jī)抽取位市民召開(kāi)座談會(huì),其中滿意程度在的有5人.
(1)求的值,并填寫(xiě)下表(2000位參與投票分?jǐn)?shù)和人數(shù)分布統(tǒng)計(jì));
滿意程度(分?jǐn)?shù)) | |||||
人數(shù) |
(2)求市民投票滿意程度的平均分(各分?jǐn)?shù)段取中點(diǎn)值);
(3)若滿意程度在的5人中恰有2位為女性,座談會(huì)將從這5位市民中任選兩位發(fā)言,求男性甲或女性乙被選中的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(2017·衢州調(diào)研)已知四棱錐P-ABCD的底面ABCD是菱形,∠ADC=120°,AD的中點(diǎn)M是頂點(diǎn)P在底面ABCD的射影,N是PC的中點(diǎn).
(1)求證:平面MPB⊥平面PBC;
(2)若MP=MC,求直線BN與平面PMC所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2020年寒假,因?yàn)?/span>“新冠”疫情全體學(xué)生只能在家進(jìn)行網(wǎng)上學(xué)習(xí),為了研究學(xué)生網(wǎng)上學(xué)習(xí)的情況,某學(xué)校隨機(jī)抽取名學(xué)生對(duì)線上教學(xué)進(jìn)行調(diào)查,其中男生與女生的人數(shù)之比為,抽取的學(xué)生中男生有人對(duì)線上教學(xué)滿意,女生中有名表示對(duì)線上教學(xué)不滿意.
(1)完成列聯(lián)表,并回答能否有的把握認(rèn)為“對(duì)線上教學(xué)是否滿意 與性別有關(guān)”;
態(tài)度 性別 | 滿意 | 不滿意 | 合計(jì) |
男生 | |||
女生 | |||
合計(jì) | 100 |
(2)從被調(diào)查的對(duì)線上教學(xué)滿意的學(xué)生中,利用分層抽樣抽取名學(xué)生,再在這名學(xué)生中抽取名學(xué)生,作線上學(xué)習(xí)的經(jīng)驗(yàn)介紹,求其中抽取一名男生與一名女生的概率.
附:.
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在三棱錐中,是邊長(zhǎng)為2的正三角形,是等腰直角三角形,.
(I)證明:平面平面ABC;
(II)點(diǎn)E在BD上,若平面ACE把三棱錐分成體積相等的兩部分,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)(1,e),(e,)在橢圓上C:1(a>b>0),其中e為橢圓的離心率.
(1)求橢圓C的方程;
(2)直線l經(jīng)過(guò)C的上頂點(diǎn)且l與拋物線M:y2=4x交于P,Q兩點(diǎn),F為橢圓的左焦點(diǎn),直線FP,FQ與M分別交于點(diǎn)D(異于點(diǎn)P),E(異于點(diǎn)Q),證明:直線DE的斜率為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形與正方形所成角的二面角的平面角的大小是是正方形所在平面內(nèi)的一條動(dòng)直線,則直線與所成角的取值范圍是( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某高校設(shè)計(jì)了一個(gè)實(shí)驗(yàn)學(xué)科的實(shí)驗(yàn)考查方案:考生從6道備選題中一次性隨機(jī)抽取3題,按照題目要求獨(dú)立完成全部實(shí)驗(yàn)操作.規(guī)定:至少正確完成其中2題的便可提交通過(guò).已知6道備選題中考生甲有4道題能正確完成,2道題不能完成.
(1)求出甲考生正確完成題數(shù)的概率分布列,并計(jì)算數(shù)學(xué)期望;
(2)若考生乙每題正確完成的概率都是,且每題正確完成與否互不影響.試從至少正確完成2題的概率分析比較兩位考生的實(shí)驗(yàn)操作能力.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com