【題目】已知空間幾何體是由圓柱切割而成的陰影部分構(gòu)成,其中,為下底面圓直徑的兩個端點(diǎn),,為上底面圓直徑的兩個端點(diǎn),且,圓柱底面半徑是1,高是2,則空間幾何體可以無縫的穿過下列哪個圖形(

A.橢圓B.等腰直角三角形C.正三角形D.正方形

【答案】D

【解析】

由題意可知,且該幾何體的高也是2,A中直接根據(jù)橢圓的幾何性質(zhì)可知A不符合題意;B、C中設(shè)的中點(diǎn),連接,,易得既不是直角三角形,也不是正三角形,均不符合題意;D中邊長為2的正方形恰好和以為直徑的圓相切,符合題意.

解:由題意可知,且該幾何體的高也是2,

A中,若橢圓的長軸長為2,短軸長小于2,則幾何體無法穿過,若橢圓的短軸長為2,長軸長大于2,則幾何體穿過時有縫隙,均不符合題意;

B中,設(shè)的中點(diǎn),連接,,則易證為二面角的平面角,易求得,而,則不是直角三角形,故B不符合題意;

C中,由B中結(jié)論,,不是正三角形,故C不符合題意;

D中,由題意,邊長為2的正方形恰好和以為直徑的圓相切,故D符合題意;

故選:D

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】PM25是衡量空氣質(zhì)量的重要指標(biāo),我國采用世衛(wèi)組織的最寬值限定值,即PM25日均值在以下空氣質(zhì)量為一級,在空氣質(zhì)量為二級,超過為超標(biāo),如圖是某地11日至10日的PM25(單位:)的日均值,則下列說法正確的是(

A.10天中PM25日均值最低的是13

B.1日到6PM25日均值逐漸升高

C.10天中恰有5天空氣質(zhì)量不超標(biāo)

D.10天中PM25日均值的中位數(shù)是43

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知以線段EF為直徑的圓內(nèi)切于圓Ox2+y216

1)若點(diǎn)F的坐標(biāo)為(﹣2,0),求點(diǎn)E的軌跡C的方程;

2)在(1)的條件下,軌跡C上存在點(diǎn)T,使得,其中M,N為直線ykx+bb≠0)與軌跡C的交點(diǎn),求△MNT的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) .

(Ⅰ)當(dāng)時,判斷的單調(diào)性;

(Ⅱ)當(dāng)時,恒有,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率,是橢圓上一點(diǎn).

1)求橢圓的方程;

2)若直線的斜率為,且直線交橢圓、兩點(diǎn),點(diǎn)關(guān)于原點(diǎn)的對稱點(diǎn)為,點(diǎn)是橢圓上一點(diǎn),判斷直線的斜率之和是否為定值,如果是,請求出此定值,如果不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)求的單調(diào)區(qū)間;

2)判斷上的零點(diǎn)的個數(shù),并說明理由.(提示:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線上一點(diǎn)到其焦點(diǎn)的距離為2.

(Ⅰ)求拋物線的標(biāo)準(zhǔn)方程;

(Ⅱ)設(shè)拋物線的準(zhǔn)線與軸交于點(diǎn),直線過點(diǎn)且與拋物線交于,兩點(diǎn)(點(diǎn)在點(diǎn)之間),點(diǎn)滿足,求的面積之和取得最小值時直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知圓柱內(nèi)有一個三棱錐,為圓柱的一條母線,,為下底面圓的直徑,

(Ⅰ)在圓柱的上底面圓內(nèi)是否存在一點(diǎn),使得平面?證明你的結(jié)論.

(Ⅱ)設(shè)點(diǎn)為棱的中點(diǎn),,求四棱錐體積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知箱中裝有10個不同的小球,其中2個紅球、3個黑球和5個白球,現(xiàn)從該箱中有放回地依次取出3個小球.則3個小球顏色互不相同的概率是_____;若變量ξ為取出3個球中紅球的個數(shù),則ξ的數(shù)學(xué)期望Eξ)為_____

查看答案和解析>>

同步練習(xí)冊答案