已知函數(shù)在點(diǎn)處的切線方程為.
(1)求,的值;
(2)對函數(shù)定義域內(nèi)的任一個實(shí)數(shù),恒成立,求實(shí)數(shù)的取值范圍.
(1);(2)
解析試題分析:(1)根據(jù)導(dǎo)數(shù)的幾何意義,函數(shù)在處的導(dǎo)數(shù)就是曲線在點(diǎn)處切線的斜率,把點(diǎn)代入切線方程中,得,把點(diǎn)代入中,得關(guān)于的一個方程,又,得關(guān)于的另一個方程,聯(lián)立解;(2)恒成立問題的解決辦法,一種方法是參變分離,由(1)得,∴,左邊函數(shù)的最大值;第二種方法是構(gòu)造函數(shù),但是考慮到求導(dǎo)時候的困難,可先變形, ,,記,最大值小于0,即可.
試題解析:(1)由
而點(diǎn)在直線上,又直線的斜率為
故有
(2)方法一:由(1)得由及
令
令,故在區(qū)間上是減函數(shù),故當(dāng)時,,當(dāng)時,,從而當(dāng)時,,當(dāng)時,在是增函數(shù),在是減函數(shù),故要使成立,只需,故的取值范圍是.
方法二:由,則,∴,記,,①當(dāng)時,不滿足恒小于0;②當(dāng)時,令,當(dāng)時,遞增,遞減,,;當(dāng)時, 所以不滿足,綜上所述:的取值范圍是.
考點(diǎn):1、導(dǎo)數(shù)的幾何意義;2、利用導(dǎo)數(shù)求函數(shù)的最值.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)的圖像過原點(diǎn),且在處的切線為直線
(Ⅰ)求函數(shù)的解析式;
(Ⅱ)求函數(shù)在區(qū)間上的最小值和最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知.
(Ⅰ)求函數(shù)在上的最小值;
(Ⅱ)對一切恒成立,求實(shí)數(shù)的取值范圍;
(Ⅲ)證明:對一切,都有成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知為函數(shù)圖象上一點(diǎn),為坐標(biāo)原點(diǎn),記直線的斜率.
(1)若函數(shù)在區(qū)間上存在極值,求實(shí)數(shù)的取值范圍;
(2)當(dāng)時,不等式恒成立,求實(shí)數(shù)的取值范圍;
(3)求證:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè).
(1)若時,單調(diào)遞增,求的取值范圍;
(2)討論方程的實(shí)數(shù)根的個數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù).
(I)求的單調(diào)區(qū)間;
(II)設(shè),若在上單調(diào)遞增,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知向量,,,點(diǎn)A、B為函數(shù)的相鄰兩個零點(diǎn),AB=π.
(1)求的值;
(2)若,,求的值;
(3)求在區(qū)間上的單調(diào)遞減區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)f(x)=x-ax+(a-1),。
(1)討論函數(shù)的單調(diào)性;(2)若,設(shè),
(。┣笞Cg(x)為單調(diào)遞增函數(shù);
(ⅱ)求證對任意x,x,xx,有.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com