【題目】下列命題中真命題的個數是
中,是的三內角A,B,C成等差數列的充要條件;
若“,則”的逆命題為真命題;
是或充分不必要條件;
是的充要條件.
A.1個B.2個C.3個D.4個
科目:高中數學 來源: 題型:
【題目】在直角坐標系中,曲線的參數方程為(為參數).以為極點,軸的正半軸為極軸建立極坐標系,直線的極坐標方程為(),將曲線向左平移2個單位長度得到曲線.
(1)求曲線的普通方程和極坐標方程;
(2)設直線與曲線交于兩點,求的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數.
(1)若曲線在點處的切線方程為,求的值;
(2)若的導函數存在兩個不相等的零點,求實數的取值范圍;
(3)當時,是否存在整數,使得關于的不等式恒成立?若存在,求出的最大值;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某高校健康社團為調查本校大學生每周運動的時長,隨機選取了80名學生,調查他們每周運動的總時長(單位:小時),按照共6組進行統計,得到男生、女生每周運動的時長的統計如下(表1、2),規(guī)定每周運動15小時以上(含15小時)的稱為“運動合格者”,其中每周運動25小時以上(含25小時)的稱為“運動達人”.
表1:男生
時長 | ||||||
人數 | 2 | 8 | 16 | 8 | 4 | 2 |
表2:女生
時長 | ||||||
人數 | 0 | 4 | 12 | 12 | 8 | 4 |
(1)從每周運動時長不小于20小時的男生中隨機選取2人,求選到“運動達人”的概率;
(2)根據題目條件,完成下面列聯表,并判斷能否有99%的把握認為本校大學生是否為“運動合格者”與性別有關.
每周運動的時長小于15小時 | 每周運動的時長不小于15小時 | 總計 | |
男生 | |||
女生 | |||
總計 | |||
參考公式:,其中.
參考數據:
0.40 | 0.25 | 0.10 | 0.010 | |
0.708 | 1.323 | 2.706 | 6.635 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程
在極坐標系中,曲線的極坐標方程為,以極點為原點,極軸為軸的非負半軸建立平面直角坐標系,直線的參數方程為(為參數, ).
(1)求曲線的直角坐標方程和直線的普通方程;
(2)若曲線上的動點到直線的最大距離為,求的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】定義在上的偶函數滿足,且,當時,.已知方程在區(qū)間上所有的實數根之和為.將函數的圖象向右平移個單位長度,得到函數的圖象,則__________,__________.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓()的左、右焦點分別是,,點為的上頂點,點在上,,且.
(1)求的方程;
(2)已知過原點的直線與橢圓交于,兩點,垂直于的直線過且與橢圓交于,兩點,若,求.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=4x+3sinx,x∈(-1,1),如果f(1-a)+f(1-a2)<0成立,則實數a的取值范圍為( )
A. (0,1) B. C. D. (-∞,-2)∪(1,+∞)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知兩定點,,點P滿足.
(1)求點P的軌跡C的方程;
(2)若,直線l與軌跡C交于A,B兩點,,的斜率之和為2,問直線l是否恒過定點,若過定點,求出定點的坐標;若不過定點,請說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com