【題目】某校收集該校學生從家到學校的時間后,制作成如下的頻率分布直方圖:

(1)求的值及該校學生從家到校的平均時間;

(2)若該校因?qū)W生寢室不足,只能容納全校的學生住校,出于安全角度考慮,從家到校時間較長的學生才住校,請問從家到校時間多少分鐘以上開始住校.

【答案】(1)分鐘;(2)從家到校時間36分鐘以上開始住校.

【解析】試題分析:(1)由頻率分布直方圖面積和為 不難得到 的值;利用頻率分布直方圖的平均數(shù)公式計算平均數(shù)即可;

2原問題等價于求到校時間的中位數(shù),找到左右面積為 的橫坐標即可.

試題解析:

(1)由題有

解得.

平均到校時間

(分鐘)

(2)原問題等價于求到校時間的中位數(shù),列式計算:

分鐘,

所以,從家到校時間36分鐘以上開始住校.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知某運動員每次投籃命中的概率低于,現(xiàn)采用隨機模擬的方法估計該運動員三次投籃恰有兩次命中的概率:先由計算器產(chǎn)生0到9之間取整數(shù)值的隨機數(shù),指定1,2,3,4表示命中,5,6,7,8,9,0表示不命中;再以每三個隨機數(shù)為一組,代表三次投籃的結(jié)果,經(jīng)隨機模擬產(chǎn)生了如下20組隨機數(shù):

907 966 191 925 271 932 812 458 569 683

431 257 393 027 556 488 730 113 537 989

據(jù)此估計,該運動員三次投籃恰有兩次命中的概率為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)(其中是實數(shù))

(1)求的單調(diào)區(qū)間;

(2)若設,且有兩個極值點,,求取值范圍.(其中為自然對數(shù)的底數(shù))

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),.

I)設,求的單調(diào)區(qū)間;

II)若處取得極大值,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的右焦點為,上頂點為,短軸長為2,為原點,直線與橢圓的另一個交點為,且的面積是的面積的3倍

(1)求橢圓的方程;

(2)直線與橢圓相交于兩點,若在橢圓上存在點,使為平行四邊形,求取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四棱錐P﹣ABCD的底面為平行四邊形,PD⊥平面ABCD,M為PC中點.

(1)求證:AP∥平面MBD;

(2)若AD⊥PB,求證:BD⊥平面PAD.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知直角梯形ABCD中,ADBCADC90°,A(-3,-10),

B (2,-1),C(3,4),

(1)求邊ADCD所在的直線方程;

(2)數(shù)列的前項和為,點在直線CD上,求證為等比數(shù)列

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓E 的離心率為,過左焦點作x軸的垂線交橢圓于AB兩點,且|AB|=1.

(1)求橢圓E的方程

(2)P、Q是橢圓E上兩點,P在第一象限,Q在第二象限,且OP⊥OQ,其中O是坐標原點.

P、Q運動時,是否存在定圓O,使得直線PQ都與定圓O相切?若存在,請求出圓O的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】解下列關(guān)于x的不等式.

(1) 4x7·2x210

(2) loga(2x1)2loga(1x)(其中a是正的常數(shù),a1)

查看答案和解析>>

同步練習冊答案