【題目】已知雙曲線(xiàn)C的方程為: ﹣ =1
(1)求雙曲線(xiàn)C的離心率;
(2)求與雙曲線(xiàn)C有公共的漸近線(xiàn),且經(jīng)過(guò)點(diǎn)A(﹣3,2 )的雙曲線(xiàn)的方程.
【答案】
(1)解:由題意知a2=9,b2=16,
所以c2=a2+b2=25,
則a=3,c=5,
所以該雙曲線(xiàn)的離心率e= =
(2)解:根據(jù)題意,則可設(shè)雙曲線(xiàn)的標(biāo)準(zhǔn)方程為 ﹣ =λ,(λ≠0);
又因?yàn)殡p曲線(xiàn)經(jīng)過(guò)點(diǎn)A(﹣3,2 )
代入方程可得,λ= ;
故這條雙曲線(xiàn)的方程為 ﹣ =1
【解析】(1)利用雙曲線(xiàn)的方程的標(biāo)準(zhǔn)形式,求出a、b、c 的值,即得離心率的值.(2)根據(jù)題意中所給的雙曲線(xiàn)的漸近線(xiàn)方,則可設(shè)雙曲線(xiàn)的標(biāo)準(zhǔn)方程為 ,(λ≠0);將點(diǎn) 代入方程,可得λ=﹣1;即可得答案.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=cos2x+ sinxcosx.
(Ⅰ)求函數(shù)f(x)的最小正周期及單調(diào)遞增區(qū)間;
(Ⅱ)求f(x)在區(qū)間[﹣ , ]上的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若函數(shù)y=f(x)的定義域?yàn)閧x|﹣2≤x≤3,且x≠2},值域?yàn)閧y|﹣1≤y≤2,且y≠0},則y=f(x)的圖象可能是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓C: + =1(a>b>0)的左右焦點(diǎn)分別為F1 , F2 , 拋物線(xiàn)y2=4x與橢圓C有相同的焦點(diǎn),且橢圓C過(guò)點(diǎn) . (I)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)若橢圓C的右頂點(diǎn)為A,直線(xiàn)l交橢圓C于E、F兩點(diǎn)(E、F與A點(diǎn)不重合),且滿(mǎn)足AE⊥AF,若點(diǎn)P為EF中點(diǎn),求直線(xiàn)AP斜率的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某產(chǎn)品在某銷(xiāo)售點(diǎn)的零售價(jià)x(單位:元)與每天的銷(xiāo)售量y(單位:個(gè))的統(tǒng)計(jì)數(shù)據(jù)如表所示:
x | 16 | 17 | 18 | 19 |
y | 50 | 34 | 41 | 31 |
由表可得回歸直線(xiàn)方程 中的 ,根據(jù)模型預(yù)測(cè)零售價(jià)為20元時(shí),每天的銷(xiāo)售量約為( )
A.30
B.29
C.27.5
D.26.5
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,定圓C半徑為2,A為圓C上的一個(gè)定點(diǎn),B為圓C上的動(dòng)點(diǎn),若點(diǎn)A,B,C不共線(xiàn),且| | |對(duì)任意t∈(0,+∞)恒成立,則 = .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義在R上的函數(shù)f(x)滿(mǎn)足f(0)=0,f(x)+f(1﹣x)=1,f( )= f(x)且當(dāng)0≤x1<x2≤1時(shí),f(x1)≤f(x2),則f( )等于( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知等比數(shù)列{an}滿(mǎn)足a1=2,a2=4(a3﹣a4),數(shù)列{bn}滿(mǎn)足bn=3﹣2log2an .
(1)求數(shù)列{an},{bn}的通項(xiàng)公式;
(2)令cn= ,求數(shù)列{cn}的前n項(xiàng)和Sn;
(3)若λ>0,求對(duì)所有的正整數(shù)n都有2λ2﹣kλ+2>a2nbn成立的k的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com